機械学習でがん治療成果に関連する国別要因を特定(UT Undergrad Uncovers Country-Specific Factors Linked to Improved Cancer Outcomes)

ad

2026-01-14 テキサス大学オースチン校(UT Austin)

米国テキサス大学オースティン校の学部生研究者は、国ごとの社会・医療体制の違いが、がん患者の治療成績向上と強く関連していることを明らかにした。公開データを用いて複数国を比較分析した結果、医療アクセスの公平性、予防医療への投資、早期診断体制、研究開発支出、社会経済的格差の小ささなどが、がん生存率の改善と有意に結び付いていることが示された。単に医療技術の高度さだけでなく、制度や政策、社会環境ががん治療成果を左右する重要な要因であることが浮き彫りになった。本研究は、各国ががん対策を強化する上で、医療システム全体を俯瞰した政策設計の必要性を示唆している。

機械学習でがん治療成果に関連する国別要因を特定(UT Undergrad Uncovers Country-Specific Factors Linked to Improved Cancer Outcomes)

<関連情報>

機械学習により、世界のがん発症の国別要因が明らかに Machine learning reveals country-specific drivers of global cancer outcomes

M.S. Patel, C.S. Pramesh, N.N. Sanford, E.J.G. Feliciano, P.L. Nguyen, P. Iyengar, T.P. Kingham, J. Willmann, B.A. Mahal, N.Y. Lee, M.J.K. Magsanoc-Alikpala, M. Mutebi, J.F. Wu, J.P.G. Robredo, E.C. Dee
Annals of Oncology  Available online: 14 January 2026
DOI:https://doi.org/10.1016/j.annonc.2025.11.014

Highlights

  • Machine learning used to identify country-level cancer outcome drivers.
  • SHAP analysis reveals key national policy levers for reducing cancer mortality.
  • GDP per capita, radiotherapy, and UHC are major global contributors to outcomes.
  • Web tool provides country-specific cancer system insights for policymakers.
  • Model predicts mortality-to-incidence ratio with high accuracy (R2 = 0.852).
Background

Global inequities in access to cancer diagnostics and treatment contribute to wide variation in cancer mortality-to-incidence ratios (MIRs), a proxy for survival. We aimed to develop an interpretable machine learning framework to quantify country-specific health system contributors to MIR and inform policy prioritization.

Materials and methods

We assembled national MIRs from GLOBOCAN 2022 for 185 countries and health system indicators from multilateral sources, including gross domestic product (GDP) per capita, universal health coverage (UHC) index, radiotherapy centers per population, health spending (%GDP), out-of-pocket expenditure, work force densities (physicians; nurses/midwives; surgical work force), pathology availability, Human Development Index, and gender inequality index. A CatBoost gradient-boosting model was trained with repeated leave-one-country-out cross-validation (10 repeats; 1850 predictions). Nested hyperparameter optimization and strict leakage control were used. Model interpretability employed SHapley Additive exPlanations (SHAP; TreeExplainer) to generate global and country-level feature attributions. SHAP values, model-derived metrics quantifying each factor’s contribution to cancer outcomes, were generated. Performance metrics included R2, root mean squared error (RMSE), mean absolute error, and Pearson correlation; uncertainty was estimated by bootstrap resampling.

Results

The model showed strong out-of-sample performance [R2 = 0.852, 95% confidence interval (CI) 0.801-0.891; RMSE 0.057, 95% CI 0.050-0.064]; correlation between predicted and observed MIRs was r = 0.923 (P = 8.30 × 10-78). Global SHAP contributions ranked GDP per capita (22.5%), radiotherapy centers per population (15.4%), and UHC index (12.9%) as the leading determinants. Country-specific SHAP profiles revealed substantial heterogeneity in dominant drivers across settings, enabling tailored policy levers (e.g. infrastructure, coverage expansion, or financial protection). An accompanying web interface provides country-level SHAP summaries for decision support.

Conclusions

An explainable machine learning approach accurately predicts national MIRs and decomposes predictions into country-specific health system attributions. While ecological and noncausal by design, the SHAP profiles translate population-level associations into actionable hypotheses for prioritizing investments—highlighting, across many contexts, radiotherapy capacity and UHC expansion as recurrent levers, and underscoring that higher total health spending alone may be insufficient without strategic allocation. Prospective, country-specific evaluations are warranted to test whether targeting model-identified drivers improve cancer outcomes.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました