遺伝子解析で薬の副作用を3割減らすことができる(Genetic analysis can reduce adverse drug reactions by 30 per cent)


2023-02-03 スウェーデン王国・カロリンスカ研究所(KI)

A credit card-sized card with a magnetic strip containing all the important genetic. Photo: The Lancet

◆患者の遺伝子に合わせた薬物を投与すれば、重篤な副作用が30%減少することが、The Lancet誌に発表された。カロリンスカ研究所の研究者が参加したヨーロッパでの共同研究は、薬物療法に先立って遺伝子解析を行うことで、患者の苦痛と医療費を大幅に削減できることを示唆しています。
◆この研究の共著者の一人であるカロリンスカ研究所生理学薬学部の分子毒性学教授Magnus Ingelman-Sundberg氏は、「これは基本的に、特定の患者に関するすべての重要な遺伝データを含む磁気ストリップが付いたクレジットカードサイズのカードです」と説明します。「患者のカードをスキャンすると、医師や薬剤師は、その人に最適な薬の量を計算することができるのです」。


副作用予防のための12遺伝子薬理遺伝学的パネル:非盲検、多施設共同、クラスター無作為化クロスオーバー実施試験 A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study

Jesse J Swen, Cathelijne H van der Wouden, Lisanne EN Manson, Heshu Abdullah-Koolmees, Kathrin Blagec, Tanja Blagus, Stefan Böhringer,  Anne Cambon-Thomsen, Erika Cecchin, Ka-Chun Cheung, Vera HM Deneer, Mathilde Dupui, Prof Magnus Ingelman-Sundberg, Siv Jonsson, Candace Joefield-Roka, Katja S Just, Mats O Karlsson, Lidija Konta, Rudolf Koopmann, Marjolein Kriek, Thorsten Lehr, Christina Mitropoulou, Emmanuelle Rial-Sebbag, Victoria Rollinson, Rossana Roncato, Matthias Samwald, Elke Schaeffeler, Maria Skokou, Prof Matthias Schwab, Prof Daniela Steinberger, Prof Julia C Stingl, Roman Tremmel, Richard M Turner, Mandy H van Rhenen, Cristina L Dávila Fajardo, Vita Dolžan, George P Patrinos, Munir Pirmohamed, Gere Sunder-Plassmann, Giuseppe Toffoli, Henk-Jan Guchelaar, on behalf of the Ubiquitous Pharmacogenomics Consortium
The Lancet  Published:February 04, 2023


The benefit of pharmacogenetic testing before starting drug therapy has been well documented for several single gene–drug combinations. However, the clinical utility of a pre-emptive genotyping strategy using a pharmacogenetic panel has not been rigorously assessed.

We conducted an open-label, multicentre, controlled, cluster-randomised, crossover implementation study of a 12-gene pharmacogenetic panel in 18 hospitals, nine community health centres, and 28 community pharmacies in seven European countries (Austria, Greece, Italy, the Netherlands, Slovenia, Spain, and the UK). Patients aged 18 years or older receiving a first prescription for a drug clinically recommended in the guidelines of the Dutch Pharmacogenetics Working Group (ie, the index drug) as part of routine care were eligible for inclusion. Exclusion criteria included previous genetic testing for a gene relevant to the index drug, a planned duration of treatment of less than 7 consecutive days, and severe renal or liver insufficiency. All patients gave written informed consent before taking part in the study. Participants were genotyped for 50 germline variants in 12 genes, and those with an actionable variant (ie, a drug–gene interaction test result for which the Dutch Pharmacogenetics Working Group [DPWG] recommended a change to standard-of-care drug treatment) were treated according to DPWG recommendations. Patients in the control group received standard treatment. To prepare clinicians for pre-emptive pharmacogenetic testing, local teams were educated during a site-initiation visit and online educational material was made available. The primary outcome was the occurrence of clinically relevant adverse drug reactions within the 12-week follow-up period. Analyses were irrespective of patient adherence to the DPWG guidelines. The primary analysis was done using a gatekeeping analysis, in which outcomes in people with an actionable drug–gene interaction in the study group versus the control group were compared, and only if the difference was statistically significant was an analysis done that included all of the patients in the study. Outcomes were compared between the study and control groups, both for patients with an actionable drug–gene interaction test result (ie, a result for which the DPWG recommended a change to standard-of-care drug treatment) and for all patients who received at least one dose of index drug. The safety analysis included all participants who received at least one dose of a study drug. This study is registered with ClinicalTrials.gov, NCT03093818 and is closed to new participants.

Between March 7, 2017, and June 30, 2020, 41 696 patients were assessed for eligibility and 6944 (51·4 % female, 48·6% male; 97·7% self-reported European, Mediterranean, or Middle Eastern ethnicity) were enrolled and assigned to receive genotype-guided drug treatment (n=3342) or standard care (n=3602). 99 patients (52 [1·6%] of the study group and 47 [1·3%] of the control group) withdrew consent after group assignment. 652 participants (367 [11·0%] in the study group and 285 [7·9%] in the control group) were lost to follow-up. In patients with an actionable test result for the index drug (n=1558), a clinically relevant adverse drug reaction occurred in 152 (21·0%) of 725 patients in the study group and 231 (27·7%) of 833 patients in the control group (odds ratio [OR] 0·70 [95% CI 0·54–0·91]; p=0·0075), whereas for all patients, the incidence was 628 (21·5%) of 2923 patients in the study group and 934 (28·6%) of 3270 patients in the control group (OR 0·70 [95% CI 0·61–0·79]; p <0·0001).

Genotype-guided treatment using a 12-gene pharmacogenetic panel significantly reduced the incidence of clinically relevant adverse drug reactions and was feasible across diverse European health-care system organisations and settings. Large-scale implementation could help to make drug therapy increasingly safe.

European Union Horizon 2020.