未来の医療画像用フィルターの作成(Creating filters for the medical images of the future)

ad

2024-02-07 カーディフ大学

未来の医療画像用フィルターの作成(Creating filters for the medical images of the future)
The researchers say their work on standardising medical image filters will benefit medical software developers and, in the future, patients too

◆国際チームの研究者によって開発された、医療画像に適用できる一連のフィルターは、医療専門家が分析と診断を支援するのに役立っています。これらのフィルターは、スマートフォンでの写真の補正と同様の方法で動作し、乳房スキャンなどの3D医療画像で病変や血管を識別するのに異なるテクスチャを強調表示します。
◆ラジオロジー誌に発表されたこの研究は、画像処理ソフトウェアを標準化するIBSIの一環として行われ、フィルターの適用を検証可能にしました。これにより、人工知能(AI)ツールの導入を未来の臨床実践に向けて開拓する可能性が高まります。

<関連情報>

画像バイオマーカー標準化イニシアティブ: 再現可能なラジオミクスと臨床的洞察の強化のための標準化された畳み込みフィルター The Image Biomarker Standardization Initiative: Standardized Convolutional Filters for Reproducible Radiomics and Enhanced Clinical Insights

Philip Whybra, Alex Zwanenburg , Vincent Andrearczyk, …
Radiology  Published:Feb 6 2024
DOI:https://doi.org/10.1148/radiol.231319

Abstract

Standardizing convolutional filters that enhance specific structures and patterns in medical imaging enables reproducible radiomics analyses, improving consistency and reliability for enhanced clinical insights.

Filters are commonly used to enhance specific structures and patterns in images, such as vessels or peritumoral regions, to enable clinical insights beyond the visible image using radiomics. However, their lack of standardization restricts reproducibility and clinical translation of radiomics decision support tools. In this special report, teams of researchers who developed radiomics software participated in a three-phase study (September 2020 to December 2022) to establish a standardized set of filters. The first two phases focused on finding reference filtered images and reference feature values for commonly used convolutional filters: mean, Laplacian of Gaussian, Laws and Gabor kernels, separable and nonseparable wavelets (including decomposed forms), and Riesz transformations. In the first phase, 15 teams used digital phantoms to establish 33 reference filtered images of 36 filter configurations. In phase 2, 11 teams used a chest CT image to derive reference values for 323 of 396 features computed from filtered images using 22 filter and image processing configurations. Reference filtered images and feature values for Riesz transformations were not established. Reproducibility of standardized convolutional filters was validated on a public data set of multimodal imaging (CT, fluorodeoxyglucose PET, and T1-weighted MRI) in 51 patients with soft-tissue sarcoma. At validation, reproducibility of 486 features computed from filtered images using nine configurations × three imaging modalities was assessed using the lower bounds of 95% CIs of intraclass correlation coefficients. Out of 486 features, 458 were found to be reproducible across nine teams with lower bounds of 95% CIs of intraclass correlation coefficients greater than 0.75. In conclusion, eight filter types were standardized with reference filtered images and reference feature values for verifying and calibrating radiomics software packages. A web-based tool is available for compliance checking.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました