新たな計算技術により、有用なタンパク質の設計が容易になるかもしれない(A new computational technique could make it easier to engineer useful proteins)

ad

2024-04-03 マサチューセッツ工科大学(MIT)

MITの研究者らは、比較的少量のデータに基づいて、タンパク質の改良を予測する計算アプローチを開発しました。このモデルを使用して、GFPやアデノ随伴ウイルス(AAV)由来のタンパク質の改良バージョンを生成し、神経科学研究や医療応用に役立つ新しいツールの開発に期待されています。

<関連情報>

平滑化されたフィットネス・ランドスケープによるタンパク質最適化の改善 Improving Protein Optimization with Smoothed Fitness Landscapes

Andrew Kirjner, Jason Yim, Raman Samusevich, Shahar Bracha, Tommi Jaakkola, Regina Barzilay, Ila Fiete
arXiv  last revised 3 Mar 2024
DOI:https://doi.org/10.48550/arXiv.2307.00494

新たな計算技術により、有用なタンパク質の設計が容易になるかもしれない(A new computational technique could make it easier to engineer useful proteins)

Abstract

The ability to engineer novel proteins with higher fitness for a desired property would be revolutionary for biotechnology and medicine. Modeling the combinatorially large space of sequences is infeasible; prior methods often constrain optimization to a small mutational radius, but this drastically limits the design space. Instead of heuristics, we propose smoothing the fitness landscape to facilitate protein optimization. First, we formulate protein fitness as a graph signal then use Tikunov regularization to smooth the fitness landscape. We find optimizing in this smoothed landscape leads to improved performance across multiple methods in the GFP and AAV benchmarks. Second, we achieve state-of-the-art results utilizing discrete energy-based models and MCMC in the smoothed landscape. Our method, called Gibbs sampling with Graph-based Smoothing (GGS), demonstrates a unique ability to achieve 2.5 fold fitness improvement (with in-silico evaluation) over its training set. GGS demonstrates potential to optimize proteins in the limited data regime. Code: this https URL

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました