より迅速で正確なCOVID検査技術を発表(Researchers unveil faster, more accurate COVID testing technique)

ad

2024-04-03 ジョージア大学 (UGA)

ジョージア大学の研究者らは、COVID-19の迅速な検出技術を開発しました。表面増強ラマン分光法と深層学習アルゴリズムを使用し、15分未満の簡単な手順でヒトの鼻咽頭スワブからSARS-CoV-2を検出し、ウイルス量を定量化する迅速診断テストを開発しました。この手法はPCRよりも速く、精度が高く、ラベルが不要であるため、実用的で費用対効果が高いです。この方法は実際の臨床試料で検証され、現実の状況での有効性が示されています。

<関連情報>

COVID-19におけるSERS診断がSFNetの強化により臨床検体中のウイルス量を迅速、正確、かつラベルフリーでモニタリングできるようになる。 Advancing SERS Diagnostics in COVID-19 with Rapid, Accurate, and Label-Free Viral Load Monitoring in Clinical Specimens via SFNet Enhancement

Yanjun Yang, Hao Li, Les Jones, Jackelyn Murray, Hemant Naikare, Yung-Yi C. Mosley, Teddy Spikes, Sebastian Hülck, Ralph A. Tripp, Bin Ai, Yiping Zhao
Advanced Materials Interfaces  Published: 31 March 2024
DOI:https://doi.org/10.1002/admi.202400013

より迅速で正確なCOVID検査技術を発表(Researchers unveil faster, more accurate COVID testing technique)

Abstract

This study presents an integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm, SFNet, to offer a rapid, accurate, and label-free alternative for COVID-19 diagnosis and viral load quantification. The SiO2-coated silver nanorod arrays are employed as the SERS substrates, fabricated using a reliable and effective glancing angle deposition technique. A dataset of 4800 SERS spectra from 120 positive and 120 negative inactivated clinical human nasopharyngeal swabs are collected directly on the SERS substrates without any labels. A SFNet algorithm is tailored to adapt to the unique spectral features inherent to SERS data, achieving a test accuracy of 98.5% and a blind test accuracy of 99.04%. Moreover, an optimized SFNet algorithm unveils the capability of estimating SARS-CoV-2 viral loads, accurately predicting the cycle threshold values (Ct values) of the three vital gene fragments with a root mean square error (RMSE) of 1.627 (1.3 for blind test). The methodology is substantiated using actual clinical specimens and completed in <15 min, thereby strengthening its real-world point-of-care applicability. This rapid and precise yet label-free modality competes favorably with classical reverse-transcription real-time polymerase chain reaction (RT-PCR) and marks an advancement in SERS-based sensor algorithms.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました