新技術が乳幼児の神経運動疾患症状の特定に役立つ可能性(New technology may help identify neuromotor disease symptoms in infants)

ad

2024-04-10 ペンシルベニア州立大学(PennState)

ペンシルベニア州立大学の研究チームは、ウェアラブルセンサーと「小型」機械学習アルゴリズムを組み合わせて、乳児の一般的な動きを自動的に監視および評価することをテストしました。人工知能ベースのアルゴリズムを備えたウェアラブルセンサーネットワークは、主観性やコストの問題を克服しています。Advanced Scienceに発表されたパイロットテストでは、新技術が一般的な動きを使用して、発達運動疾患のリスクがある乳児を自動的に識別できることが示されました。

<関連情報>

乳児の全身運動の早期自動評価のための知能スパースセンサーネットワーク Intelligence Sparse Sensor Network for Automatic Early Evaluation of General Movements in Infants

Benkun Bao, Senhao Zhang, Honghua Li, Weidong Cui, Kai Guo, Yingying Zhang, Kerong Yang, Shuai Liu, Yao Tong, Jia Zhu, Yuan Lin, Huanlan Xu, Hongbo Yang, Xiankai Cheng, Huanyu Cheng
Advanced Science Published: 06 March 2024
DOI:https://doi.org/10.1002/advs.202306025

新技術が乳幼児の神経運動疾患症状の特定に役立つ可能性(New technology may help identify neuromotor disease symptoms in infants)

Abstract

General movements (GMs) have been widely used for the early clinical evaluation of infant brain development, allowing immediate evaluation of potential development disorders and timely rehabilitation. The infants’ general movements can be captured digitally, but the lack of quantitative assessment and well-trained clinical pediatricians presents an obstacle for many years to achieve wider deployment, especially in low-resource settings. There is a high potential to explore wearable sensors for movement analysis due to outstanding privacy, low cost, and easy-to-use features. This work presents a sparse sensor network with soft wireless IMU devices (SWDs) for automatic early evaluation of general movements in infants. The sparse network consisting of only five sensor nodes (SWDs) with robust mechanical properties and excellent biocompatibility continuously and stably captures full-body motion data. The proof-of-the-concept clinical testing with 23 infants showcases outstanding performance in recognizing neonatal activities, confirming the reliability of the system. Taken together with a tiny machine learning algorithm, the system can automatically identify risky infants based on the GMs, with an accuracy of up to 100% (99.9%). The wearable sparse sensor network with an artificial intelligence-based algorithm facilitates intelligent evaluation of infant brain development and early diagnosis of development disorders.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました