複雑なシングルセルゲノムデータを解読する画期的な「scLENS」を発表(Revolutionary ‘scLENS’ Unveiled to Decode Complex Single-Cell Genomic Data)

ad

2024-04-30 韓国基礎科学研究院(IBS)

「Nature Communications」に掲載された新しい研究で、IBSとKAISTの研究者が、ランダム行列理論を活用した単一細胞RNAシーケンシング解析ツール「scLENS」を発表しました。このツールは、主観的なバイアスを排除し、データの精度と効率を大幅に向上させます。scLENSは、複雑なデータから生物学的シグナルを簡単に抽出することを可能にし、生命科学研究における大きな進歩を約束します。これにより、研究者は迅速に重要な遺伝子を特定し、細胞プロセスの理解を深めることができます。

<関連情報>

scLENS:偏りのないscRNA-seqデータ解析のためのデータ駆動型シグナル検出法 scLENS: data-driven signal detection for unbiased scRNA-seq data analysis

Hyun Kim,Won Chang,Seok Joo Chae,Jong-Eun Park,Minseok Seo & Jae Kyoung Kim
Nature Communications  Published:27 April 2024
DOI:https://doi.org/10.1038/s41467-024-47884-3

複雑なシングルセルゲノムデータを解読する画期的な「scLENS」を発表(Revolutionary ‘scLENS’ Unveiled to Decode Complex Single-Cell Genomic Data)

Abstract

High dimensionality and noise have limited the new biological insights that can be discovered in scRNA-seq data. While dimensionality reduction tools have been developed to extract biological signals from the data, they often require manual determination of signal dimension, introducing user bias. Furthermore, a common data preprocessing method, log normalization, can unintentionally distort signals in the data. Here, we develop scLENS, a dimensionality reduction tool that circumvents the long-standing issues of signal distortion and manual input. Specifically, we identify the primary cause of signal distortion during log normalization and effectively address it by uniformizing cell vector lengths with L2 normalization. Furthermore, we utilize random matrix theory-based noise filtering and a signal robustness test to enable data-driven determination of the threshold for signal dimensions. Our method outperforms 11 widely used dimensionality reduction tools and performs particularly well for challenging scRNA-seq datasets with high sparsity and variability. To facilitate the use of scLENS, we provide a user-friendly package that automates accurate signal detection of scRNA-seq data without manual time-consuming tuning.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました