2024-07-16 バージニア工科大学(VirginiaTech)
◆この研究は、高周波不可逆電気穿孔(H-FIRE)という最小侵襲プロセスに基づいており、非熱的電気パルスを使用して癌細胞を破壊します。新しい手法であるバーストサイン波電気穿孔(B-SWE)は、正方形の波形の代わりに正弦波を使用し、血液脳関門の破壊と腫瘍細胞の破壊を目指します。B-SWEは血液脳関門をより効果的に破壊し、健康な脳組織へのダメージを最小限に抑えつつ、薬物が脳内に浸透しやすくなる可能性があります。今後は、動物モデルを使用して、この手法の効果をさらに検証する予定です。
<関連情報>
- https://news.vt.edu/articles/2024/07/vetmed-brain-cancer-treatment.html
- https://pubs.aip.org/aip/apb/article/8/2/026117/3295475/Burst-sine-wave-electroporation-B-SWE-for
バーストサインウェーブ・エレクトロポレーション(B-SWE)は、神経疾患に対する広範な血液脳関門破壊と制御された非熱的組織切除のためのものである
Burst sine wave electroporation (B-SWE) for expansive blood–brain barrier disruption and controlled non-thermal tissue ablation for neurological disease
Sabrina N. Campelo;Zaid S. Salameh;Julio P. Arroyo;James L. May;Sara O. Altreuter;Jonathan Hinckley;Rafael V. Davalos;John H. Rossmeisl, Jr.
APL Bioengineering Published:May 30 2024
DOI:https://doi.org/10.1063/5.0198382
The blood–brain barrier (BBB) limits the efficacy of treatments for malignant brain tumors, necessitating innovative approaches to breach the barrier. This study introduces burst sine wave electroporation (B-SWE) as a strategic modality for controlled BBB disruption without extensive tissue ablation and compares it against conventional pulsed square wave electroporation-based technologies such as high-frequency irreversible electroporation (H-FIRE). Using an in vivo rodent model, B-SWE and H-FIRE effects on BBB disruption, tissue ablation, and neuromuscular contractions are compared. Equivalent waveforms were designed for direct comparison between the two pulsing schemes, revealing that B-SWE induces larger BBB disruption volumes while minimizing tissue ablation. While B-SWE exhibited heightened neuromuscular contractions when compared to equivalent H-FIRE waveforms, an additional low-dose B-SWE group demonstrated that a reduced potential can achieve similar levels of BBB disruption while minimizing neuromuscular contractions. Repair kinetics indicated faster closure post B-SWE-induced BBB disruption when compared to equivalent H-FIRE protocols, emphasizing B-SWE’s transient and controllable nature. Additionally, finite element modeling illustrated the potential for extensive BBB disruption while reducing ablation using B-SWE. B-SWE presents a promising avenue for tailored BBB disruption with minimal tissue ablation, offering a nuanced approach for glioblastoma treatment and beyond.