従来の感染症モデリングの根本的な限界を克服(Overcoming Fundamental Limitations of Conventional Infectious Disease Modeling)

ad

2024-10-17 韓国基礎科学研究院(IBS)

韓国のKAISTや他機関の研究チームは、感染症モデルの偏りを解消する新しい推定手法を開発し、従来の手法の限界を克服しました。従来のモデルは、時間経過に関係なく一定の確率で病状が進行する「履歴非依存型」でしたが、この新手法は履歴依存型の枠組みを採用し、より正確な疫学パラメーター推定が可能になりました。これにより、感染症拡大予測が改善され、政策決定に役立つツールとして期待されています。

<関連情報>

現実的な病歴依存の疾病伝播ダイナミクスを用いた疫学パラメータ推定におけるバイアスの克服 Overcoming bias in estimating epidemiological parameters with realistic history-dependent disease spread dynamics

Hyukpyo Hong,Eunjin Eom,Hyojung Lee,Sunhwa Choi,Boseung Choi & Jae Kyoung Kim
Nature Communications  Published:09 October 2024
DOI:https://doi.org/10.1038/s41467-024-53095-7

従来の感染症モデリングの根本的な限界を克服(Overcoming Fundamental Limitations of Conventional Infectious Disease Modeling)

Abstract

Epidemiological parameters such as the reproduction number, latent period, and infectious period provide crucial information about the spread of infectious diseases and directly inform intervention strategies. These parameters have generally been estimated by mathematical models that involve an unrealistic assumption of history-independent dynamics for simplicity. This assumes that the chance of becoming infectious during the latent period or recovering during the infectious period remains constant, whereas in reality, these chances vary over time. Here, we find that conventional approaches with this assumption cause serious bias in epidemiological parameter estimation. To address this bias, we developed a Bayesian inference method by adopting more realistic history-dependent disease dynamics. Our method more accurately and precisely estimates the reproduction number than the conventional approaches solely from confirmed cases data, which are easy to obtain through testing. It also revealed how the infectious period distribution changed throughout the COVID-19 pandemic during 2020 in South Korea. We also provide a user-friendly package, IONISE, that automates this method.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました