医療データの偏りを考慮することで、AIによる人種間格差の拡大を防ぐことができる(Accounting for bias in medical data helps prevent AI from amplifying racial disparity)

ad

2024-10-30 ミシガン大学

ミシガン大学の研究により、AIが医療データの人種的偏りを悪化させるのを防ぐ方法が開発されました。黒人患者は白人患者に比べ、重篤な疾患の診断に必要な検査を受ける頻度が低く、この偏りがAIモデルに組み込まれる可能性があります。研究者は未検査患者の健康状態を補正するアルゴリズムを開発し、AIモデルの診断精度を向上させました。この方法は、ヘルスケアの公平性向上に寄与する可能性があります。

<関連情報>

AIにおけるバイアスの潜在的メカニズムとしての臨床検査における人種差:救急部受診におけるマッチドコホート分析 Racial differences in laboratory testing as a potential mechanism for bias in AI: A matched cohort analysis in emergency department visits

Trenton Chang,Mark Nuppnau,Ying He,Keith E. Kocher,Thomas S. Valley,Michael W. Sjoding,Jenna Wiens
PLOS Global Public Health  Published: October 30, 2024
DOI:https://doi.org/10.1371/journal.pgph.0003555

医療データの偏りを考慮することで、AIによる人種間格差の拡大を防ぐことができる(Accounting for bias in medical data helps prevent AI from amplifying racial disparity)

Abstract

AI models are often trained using available laboratory test results. Racial differences in laboratory testing may bias AI models for clinical decision support, amplifying existing inequities. This study aims to measure the extent of racial differences in laboratory testing in adult emergency department (ED) visits. We conducted a retrospective 1:1 exact-matched cohort study of Black and White adult patients seen in the ED, matching on age, biological sex, chief complaint, and ED triage score, using ED visits at two U.S. teaching hospitals: Michigan Medicine, Ann Arbor, MI (U-M, 2015–2022), and Beth Israel Deaconess Medical Center, Boston, MA (BIDMC, 2011–2019). Post-matching, White patients had significantly higher testing rates than Black patients for complete blood count (BIDMC difference: 1.7%, 95% CI: 1.1% to 2.4%, U-M difference: 2.0%, 95% CI: 1.6% to 2.5%), metabolic panel (BIDMC: 1.5%, 95% CI: 0.9% to 2.1%, U-M: 1.9%, 95% CI: 1.4% to 2.4%), and blood culture (BIDMC: 0.9%, 95% CI: 0.5% to 1.2%, U-M: 0.7%, 95% CI: 0.4% to 1.1%). Black patients had significantly higher testing rates for troponin than White patients (BIDMC: -2.1%, 95% CI: -2.6% to -1.6%, U-M: -2.2%, 95% CI: -2.7% to -1.8%). The observed racial testing differences may impact AI models trained using available laboratory results. The findings also motivate further study of how such differences arise and how to mitigate potential impacts on AI models.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました