AIが術後合併症の予測を向上 (Foundation AI Model Predicts Postoperative Risks from Clinical Notes)

ad

2025-03-05 ワシントン大学セントルイス校 (WashU)

ワシントン大学セントルイス校の研究者は、大規模言語モデル(LLM)を活用し、術前の臨床ノートから術後合併症のリスクを予測する新たな手法を開発した。従来のモデルより高精度でリスクを特定し、特に見逃されがちな患者の合併症リスクをより正確に予測できる。約85,000件の手術ノートを基に評価された結果、LLMは従来の手法を上回る成果を示した。この技術は、術後合併症の早期発見と予防に貢献し、患者の安全性向上につながると期待されている。

<関連情報>

クリニカルノートを用いた術後リスク予測における大規模言語モデルの基礎的能力 The foundational capabilities of large language models in predicting postoperative risks using clinical notes

Charles Alba,Bing Xue,Joanna Abraham,Thomas Kannampallil & Chenyang Lu
npj Digital Medicine  Published:11 February 2025
DOI:https://doi.org/10.1038/s41746-025-01489-2

AIが術後合併症の予測を向上 (Foundation AI Model Predicts Postoperative Risks from Clinical Notes)

Abstract

Clinical notes recorded during a patient’s perioperative journey holds immense informational value. Advances in large language models (LLMs) offer opportunities for bridging this gap. Using 84,875 preoperative notes and its associated surgical cases from 2018 to 2021, we examine the performance of LLMs in predicting six postoperative risks using various fine-tuning strategies. Pretrained LLMs outperformed traditional word embeddings by an absolute AUROC of 38.3% and AUPRC of 33.2%. Self-supervised fine-tuning further improved performance by 3.2% and 1.5%. Incorporating labels into training further increased AUROC by 1.8% and AUPRC by 2%. The highest performance was achieved with a unified foundation model, with improvements of 3.6% for AUROC and 2.6% for AUPRC compared to self-supervision, highlighting the foundational capabilities of LLMs in predicting postoperative risks, which could be potentially beneficial when deployed for perioperative care.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました