ナノテクノロジーを活用した細胞識別の新技術を発表 (Using Nanotech as a Way of Differentiating Cells from One Another)

ad

2025-03-10 ロードアイランド大学

ロードアイランド大学の化学工学准教授ダニエル・ロックスベリー氏と博士研究員のアセル・ナディーム氏は、カーボンナノチューブと機械学習を組み合わせ、類似した免疫細胞間の微細な違いを検出する新たな手法を開発しました。 この方法は、M1およびM2マクロファージと呼ばれる免疫細胞のわずかな差異を識別するもので、将来的にはがんなどの疾患の早期発見に役立つ可能性があります。カーボンナノチューブは、赤外線を照射すると特有の光を放つ性質があり、細胞内のpHレベルやタンパク質濃度、イオン変化などの多様な細胞変化を検出することが可能です。この技術は、健康な細胞と異常な細胞を区別する新しい方法として期待されています。

<関連情報>

マクロファージフェノタイピングのための機械学習支援型近赤外スペクトルフィンガープリンティング Machine Learning-Assisted Near-Infrared Spectral Fingerprinting for Macrophage Phenotyping

Aceer Nadeem,Sarah Lyons,Aidan Kindopp,Amanda Jamieson,Daniel Roxbury
ACS Nano  Published: August 15, 2024
DOI:https://doi.org/10.1021/acsnano.4c03387

Abstract

ナノテクノロジーを活用した細胞識別の新技術を発表 (Using Nanotech as a Way of Differentiating Cells from One Another)

Spectral fingerprinting has emerged as a powerful tool that is adept at identifying chemical compounds and deciphering complex interactions within cells and engineered nanomaterials. Using near-infrared (NIR) fluorescence spectral fingerprinting coupled with machine learning techniques, we uncover complex interactions between DNA-functionalized single-walled carbon nanotubes (DNA-SWCNTs) and live macrophage cells, enabling in situ phenotype discrimination. Utilizing Raman microscopy, we showcase statistically higher DNA-SWCNT uptake and a significantly lower defect ratio in M1 macrophages compared to M2 and naive phenotypes. NIR fluorescence data also indicate that distinctive intraendosomal environments of these cell types give rise to significant differences in many optical features, such as emission peak intensities, center wavelengths, and peak intensity ratios. Such features serve as distinctive markers for identifying different macrophage phenotypes. We further use a support vector machine (SVM) model trained on SWCNT fluorescence data to identify M1 and M2 macrophages, achieving an impressive accuracy of >95%. Finally, we observe that the stability of DNA-SWCNT complexes, influenced by DNA sequence length, is a crucial consideration for applications, such as cell phenotyping or mapping intraendosomal microenvironments using AI techniques. Our findings suggest that shorter DNA-sequences like GT6 give rise to more improved model accuracy (>87%) due to increased active interactions of SWCNTs with biomolecules in the endosomal microenvironment. Implications of this research extend to the development of nanomaterial-based platforms for cellular identification, holding promise for potential applications in real time monitoring of in vivo cellular differentiation.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました