霧状熱ゲルに次世代生体医療材料の可能性(‘Patchy’ thermogels show next-gen biomedical material potential, scientists say)

ad

2025-04-09 ペンシルベニア州立大学(Penn State)

ペンシルベニア州立大学の長谷川麗准教授らの研究チームは、体内で注射後に液体からゲル状に変化する次世代バイオ医療材料「パッチ状サーモゲル」を開発しました。これらはナノ粒子表面に「粘着パッチ」を持ち、加熱により秩序ある構造を形成、従来より高い機械的安定性と応用柔軟性を実現します。特にがん手術後の軟組織再建などにおける足場材料として有望です。研究成果は『Advanced Functional Materials』誌に掲載され、今後の生体内応用に向けた研究も進行中です。

<関連情報>

パッチ状高分子ミセルに基づく熱誘起ゲル化システム Thermally Induced Gelling Systems Based on Patchy Polymeric Micelles

Binru Han, Shota Fujii, André J. van der Vlies, Masoud Ghasemi, Joshua T. Del Mundo, Sarah N. Kiemle, Esther W. Gomez, Enrique D. Gomez, Ralph H. Colby, Urara Hasegawa
Advanced Functional Materials  Published: 16 November 2024
DOI:https://doi.org/10.1002/adfm.202417544

霧状熱ゲルに次世代生体医療材料の可能性(‘Patchy’ thermogels show next-gen biomedical material potential, scientists say)

Abstract

Thermogels that exhibit a sol-gel transition at body temperature represent a promising class of injectable biomaterials for biomedical applications. Thermogels reported thus far are generally composed of amphiphilic block copolymer micelles with an isotropic thermosensitive surface that induces intermicellar aggregation upon heating. Despite the promise, these hydrogels exhibit low mechanical strengths due to their uncontrollable aggregation resulting in void formation. To gain better control over intermicellar assembly, herein a novel thermogel design concept is presented based on patchy polymeric micelles bearing multiple thermosensitive surface domains. These domains serve as “patches” to bridge the micelles to form a percolated network structure. Patchy micelles are prepared from a binary mixture of amphiphilic block copolymers: Poly(N-acryloylmorpholine)-b-poly(N-benzylacrylamide) (PAM-PBzAM) and poly (N-isopropyl acrylamide)-b-poly(N-benzylacrylamide) (PNIPAM-PBzAM), where PBzAM, PAM and PNIPAM are the hydrophobic, hydrophilic and thermosensitive blocks, respectively. At 25 °C, the polymers self-assembled into mixed shell micelles having a phase-separated shell with PAM- and PNIPAM-rich domains. At 37 °C, the PNIPAM domains undergo a hydrophilic-to-hydrophobic transition to induce intermicellar assembly into entangled worm-like structures resulting in hydrogel formation. Patchy micelles form a homogeneous network structure without voids. The micelle design significantly affects the inter-micellar assembly, the thermogelling behavior, and the mechanical properties of the hydrogels.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました