AIによる早期警告で敗血症を防止するプラットフォームを開発(Sepsis detection platform prevents thousands of deaths)

ad

2025-04-23 ジョンズ・ホプキンス大学(JHU)

ジョンズ・ホプキンス大学のサチ・サリア准教授が開発したAIベースの敗血症早期警告システム「TREWS」は、全米の多数の病院で導入され、敗血症による死亡率を18%削減する成果を上げています。このシステムは電子カルテと機械学習を統合し、従来より約2時間早く敗血症を検出。その結果、平均入院期間が半日短縮され、ICU利用も10%減少しました。TREWSは医師の業務フローに自然に組み込まれ、90%の導入率を達成しています。この研究はNSFの支援を受け、スタートアップ「Bayesian Health」として実用化されました。サリア氏は、2017年に甥を敗血症で亡くした経験をきっかけに、この技術の開発に取り組んでいます。

<関連情報>

TREWS機械学習ベースの早期警告システムのプロバイダー採用を促進する要因と敗血症治療タイミングへの影響 Factors driving provider adoption of the TREWS machine learning-based early warning system and its effects on sepsis treatment timing

Katharine E. Henry,Roy Adams,Cassandra Parent,Hossein Soleimani,Anirudh Sridharan,Lauren Johnson,David N. Hager,Sara E. Cosgrove,Andrew Markowski,Eili Y. Klein,Edward S. Chen,Mustapha O. Saheed,Maureen Henley,Sheila Miranda,Katrina Houston,Robert C. Linton II,Anushree R. Ahluwalia,Albert W. Wu & Suchi Saria
Nature Medicine  Published:21 July 2022
DOI:https://doi.org/10.1038/s41591-022-01895-z

AIによる早期警告で敗血症を防止するプラットフォームを開発(Sepsis detection platform prevents thousands of deaths)

Abstract

Machine learning-based clinical decision support tools for sepsis create opportunities to identify at-risk patients and initiate treatments at early time points, which is critical for improving sepsis outcomes. In view of the increasing use of such systems, better understanding of how they are adopted and used by healthcare providers is needed. Here, we analyzed provider interactions with a sepsis early detection tool (Targeted Real-time Early Warning System), which was deployed at five hospitals over a 2-year period. Among 9,805 retrospectively identified sepsis cases, the early detection tool achieved high sensitivity (82% of sepsis cases were identified) and a high rate of adoption: 89% of all alerts by the system were evaluated by a physician or advanced practice provider and 38% of evaluated alerts were confirmed by a provider. Adjusting for patient presentation and severity, patients with sepsis whose alert was confirmed by a provider within 3 h had a 1.85-h (95% CI 1.66–2.00) reduction in median time to first antibiotic order compared to patients with sepsis whose alert was either dismissed, confirmed more than 3 h after the alert or never addressed in the system. Finally, we found that emergency department providers and providers who had previous interactions with an alert were more likely to interact with alerts, as well as to confirm alerts on retrospectively identified patients with sepsis. Beyond efforts to improve the performance of early warning systems, efforts to improve adoption are essential to their clinical impact and should focus on understanding providers’ knowledge of, experience with and attitudes toward such systems.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました