脳波デコーダーによる脊髄刺激制御技術(Brain decoder controls spinal cord stimulation)

ad

2025-05-02 ワシントン大学セントルイス校

ワシントン大学セントルイス校の研究チームは、脳波を解析して脊髄への電気刺激を制御する非侵襲型のブレイン-スパイン・インターフェース(BSI)を開発しました。健常者17名を対象に、実際に膝を伸ばす動作とその動作を想像する課題で脳波データを収集し、動作意図を検出するデコーダーを訓練。想像だけで脊髄刺激を誘発できることを確認しました。この技術は、脊髄損傷患者のリハビリに応用可能で、将来的には一般化されたデコーダーの開発も目指しています。

<関連情報>

経皮的脊髄刺激を用いた非侵襲的脳脊髄インターフェイスの開発と評価 Development and evaluation of a non-invasive brain-spine interface using transcutaneous spinal cord stimulation

Carolyn Atkinson,Lorenzo Lombardi,Meredith Lang,Rodolfo Keesey,Rachel Hawthorn,Zachary Seitz,Eric C. Leuthardt,Peter Brunner & Ismael Seáñez
Journal of NeuroEngineering and Rehabilitation
Published:25 April 2025
DOI:https://doi.org/10.1186/s12984-025-01628-6

脳波デコーダーによる脊髄刺激制御技術(Brain decoder controls spinal cord stimulation)

Abstract

Motor rehabilitation is a therapeutic process to facilitate functional recovery in people with spinal cord injury (SCI). However, its efficacy is limited to areas with remaining sensorimotor function. Spinal cord stimulation (SCS) creates a temporary prosthetic effect that may allow further rehabilitation-induced recovery in individuals without remaining sensorimotor function, thereby extending the therapeutic reach of motor rehabilitation to individuals with more severe injuries. In this work, we report our first steps in developing a non-invasive brain-spine interface (BSI) based on electroencephalography (EEG) and transcutaneous spinal cord stimulation (tSCS). The objective of this study was to identify EEG-based neural correlates of lower limb movement in the sensorimotor cortex of unimpaired individuals (N = 17) and to quantify the performance of a linear discriminant analysis (LDA) decoder in detecting movement onset from these neural correlates. Our results show that initiation of knee extension was associated with event-related desynchronization in the central-medial cortical regions at frequency bands between 4 and 44 Hz. Our neural decoder using µ (8–12 Hz), low β (16–20 Hz), and high β (24–28 Hz) frequency bands achieved an average area under the curve (AUC) of 0.83 ± 0.06 s.d. (n = 7) during a cued movement task offline. Generalization to imagery and uncued movement tasks served as positive controls to verify robustness against movement artifacts and cue-related confounds, respectively. With the addition of real-time decoder-modulated tSCS, the neural decoder performed with an average AUC of 0.81 ± 0.05 s.d. (n = 9) on cued movement and 0.68 ± 0.12 s.d. (n = 9) on uncued movement. Our results suggest that the decrease in decoder performance in uncued movement may be due to differences in underlying cortical strategies between conditions. Furthermore, we explore alternative applications of the BSI system by testing neural decoders trained on uncued movement and imagery tasks. By developing a non-invasive BSI, tSCS can be timed to be delivered only during voluntary effort, which may have implications for improving rehabilitation.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました