AIで乳がんの早期発見を改善(AI Could Help Improve Early Detection of Breast Cancers Between Screenings, UCLA-Led Study Shows)

ad

2025-05-05 カリフォルニア大学ロサンゼルス校(UCLA)

AIで乳がんの早期発見を改善(AI Could Help Improve Early Detection of Breast Cancers Between Screenings, UCLA-Led Study Shows)
Dr. Steven Harmes/Cancer.Gov

UCLAの研究チームは、AIを活用して定期検診の間に見逃されやすい「インターバル乳がん」を早期に発見する可能性を示しました。2010〜2019年の約18万5,000件のマンモグラムを解析し、AIソフト「Transpara」はがんの76%、放射線科医が見落としたケースの90%、微細兆候を示すがんの89%を正確に検出しました。これにより、インターバル乳がん発生率を最大30%減らせる可能性がある一方で、AIの判定精度には今後の検証が必要とされています。

<関連情報>

乳癌のマンモグラフィ分類と人工知能の性能 Mammographic classification of interval breast cancers and artificial intelligence performance

Tiffany T Yu, MD , Anne C Hoyt, MD , Melissa M Joines, MD , Cheryce P Fischer, MD , Nazanin Yaghmai, MD , James S Chalfant, MD , Lucy Chow, MD , Shabnam Mortazavi, MD , Christopher D Sears, BS , James Sayre, PhD…
JNCI: Journal of the National Cancer Institute  Published:18 April 2025
DOI:https://doi.org/10.1093/jnci/djaf103

Abstract

Background

European studies suggest artificial intelligence (AI) can reduce interval breast cancers (IBCs). However, research on IBC classification and AI’s effectiveness in the U.S., particularly using digital breast tomosynthesis (DBT) and annual screening, is limited. We aimed to mammographically classify IBCs and assess AI performance using a 12-month screening interval.

Methods

From digital mammography (DM) and DBT screening mammograms acquired 2010-2019 at a U.S. tertiary care academic center, we identified IBCs diagnosed <12 months after a negative mammogram. At least three breast radiologists retrospectively classified IBCs as missed-reading error, minimal signs-actionable, minimal signs-non-actionable, true interval, occult, or missed-technical error. A deep-learning AI tool assigned risk scores (1-10) to the negative index screening mammograms, with scores ≥8 considered “flagged.” Statistical analysis evaluated associations among IBC types and AI exam scores, AI markings, and patient/tumor characteristics.

Results

From 184,935 screening mammograms (65% DM, 35% DBT), we identified 148 IBCs in 148 women (mean age, 61±12 years). Of these, 26% were minimal signs-actionable; 24% occult; 22% minimal signs-non-actionable; 17% missed-reading error; 6% true interval; and 5% missed-technical error (p<.001). AI scored 131 mammograms (17 errors excluded). AI most frequently flagged exams with missed-reading errors (90%), minimal signs-actionable (89%) and minimal signs-non-actionable (72%) (p=.02). AI localized mammographically-visible types more accurately (35-68%) than non-visible types (0-50%, p=.02).

Conclusion

AI more frequently flagged and accurately localized IBC types that were mammographically visible at screening (missed or minimal signs), as compared to true interval or occult cancers.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました