シアノバクテリアの昼夜遺伝制御の仕組みを解明(Gene Regulatory Networks Respond to Day and Night Cues to Affect Phenotype in Cyanbacteria)

ad

2025-05-19 パシフィック・ノースウェスト国立研究所(PNNL)

太平洋岸北西部国立研究所(PNNL)の研究チームは、シアノバクテリア(光合成を行う微生物)の遺伝子制御ネットワークが昼夜の光環境に応じてどのように変化し、細胞の表現型に影響を与えるかを明らかにしました。この研究では、モデル生物であるSynechococcus elongatusを用い、光の変化に対する遺伝子発現とタンパク質の酸化還元状態の変動を解析しました。その結果、光の刺激により、転写因子や代謝酵素のシステイン残基の酸化還元状態が変化し、遺伝子発現の調節が行われることが示されました。これらの知見は、光合成微生物の環境適応メカニズムの理解を深め、バイオテクノロジーへの応用可能性を示唆しています。

<関連情報>

遺伝子ネットワーク中心性解析により、Synechococcus elongatus PCC 7942における昼夜の代謝転換を調整する重要な制御因子が同定された
Gene network centrality analysis identifies key regulators coordinating day-night metabolic transitions in Synechococcus elongatus PCC 7942 despite limited accuracy in predicting direct regulator-gene interactions

Zachary Johnson,David Anderson,Margaret S. Cheung,Pavlo Bohutskyi
Frontiers in Microbiology  Published:26 March 2025
DOI:https://doi.org/10.3389/fmicb.2025.1569559

シアノバクテリアの昼夜遺伝制御の仕組みを解明(Gene Regulatory Networks Respond to Day and Night Cues to Affect Phenotype in Cyanbacteria)

Synechococcus elongatus PCC 7942 is a model organism for studying circadian regulation and bioproduction, where precise temporal control of metabolism significantly impacts photosynthetic efficiency and CO2-to-bioproduct conversion. Despite extensive research on core clock components, our understanding of the broader regulatory network orchestrating genome-wide metabolic transitions remains incomplete. We address this gap by applying machine learning tools and network analysis to investigate the transcriptional architecture governing circadian-controlled gene expression. While our approach showed moderate accuracy in predicting individual transcription factor-gene interactions – a common challenge with real expression data – network-level topological analysis successfully revealed the organizational principles of circadian regulation. Our analysis identified distinct regulatory modules coordinating day-night metabolic transitions, with photosynthesis and carbon/nitrogen metabolism controlled by day-phase regulators, while nighttime modules orchestrate glycogen mobilization and redox metabolism. Through network centrality analysis, we identified potentially significant but previously understudied transcriptional regulators: HimA as a putative DNA architecture regulator, and TetR and SrrB as potential coordinators of nighttime metabolism, working alongside established global regulators RpaA and RpaB. This work demonstrates how network-level analysis can extract biologically meaningful insights despite limitations in predicting direct regulatory interactions. The regulatory principles uncovered here advance our understanding of how cyanobacteria coordinate complex metabolic transitions and may inform metabolic engineering strategies for enhanced photosynthetic bioproduction from CO2.

生物環境工学
ad
ad
Follow
ad
タイトルとURLをコピーしました