AIが感染症予測を再定義(AI Reimagines Infectious Disease Forecasting)

ad

2025-06-06 ジョンズ・ホプキンス大学 (JHU)

ジョンズ・ホプキンズ大学らの研究チームは、感染症拡大を高精度に予測するAIツール「PandemicLLM」を開発しました。大規模言語モデルを活用し、人口統計や疫学データ、政策情報、ゲノム監視など4種のデータを統合。COVID-19などの感染動向を1〜3週間先まで予測可能です。パンデミック期のデータで高精度な予測性能が実証され、変化の激しい状況下でも他手法を上回る結果を示しました。成果は『Nature Computational Science』に掲載。

<関連情報>

大規模言語モデルを用いたリアルタイム感染症予測の進展 Advancing real-time infectious disease forecasting using large language models

Hongru Du,Yang Zhao,Jianan Zhao,Shaochong Xu,Xihong Lin,Yiran Chen,Lauren M. Gardner & Hao ‘Frank’ Yang
Nature Computational Science  Published:06 June 2025
DOI:https://doi.org/10.1038/s43588-025-00798-6

AIが感染症予測を再定義(AI Reimagines Infectious Disease Forecasting)

Abstract

Forecasting the short-term spread of an ongoing disease outbreak poses a challenge owing to the complexity of contributing factors, some of which can be characterized through interlinked, multi-modality variables, and the intersection of public policy and human behavior. Here we introduce PandemicLLM, a framework with multi-modal large language models (LLMs) that reformulates real-time forecasting of disease spread as a text-reasoning problem, with the ability to incorporate real-time, complex, non-numerical information. This approach, through an artificial intelligence–human cooperative prompt design and time-series representation learning, encodes multi-modal data for LLMs. The model is applied to the COVID-19 pandemic, and trained to utilize textual public health policies, genomic surveillance, spatial and epidemiological time-series data, and is tested across all 50 states of the United States for a duration of 19 months. PandemicLLM opens avenues for incorporating various pandemic-related data in heterogeneous formats and shows performance benefits over existing models.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました