機械学習が血液からの脳腫瘍検出を改善(Machine learning can improve detection of brain cancer from blood)

ad

2025-06-18 ワシントン大学セントルイス校

ワシントン大学の研究チームは、機械学習を用いて血液中のDNAパターンを解析し、脳腫瘍を最大75%の精度で検出する新手法を開発。脳内腫瘍のバイオマーカーは血液脳関門により検出困難とされていたが、本技術では腫瘍由来の細胞外DNAや免疫応答の変化をAIが捉え、早期発見を可能にした。この検査により、年間1,700件以上の脳がんを早期診断できる可能性があり、画像診断への依存を減らしつつ予後改善が期待される。

<関連情報>

ゲノムワイドな無細胞DNAフラグメントを用いた脳腫瘍の検出 Detection of Brain Cancer Using Genome-Wide Cell-free DNA Fragmentomes

Dimitrios Mathios;Noushin Niknafs;Akshaya V. Annapragada;Ernest J. Bobeff;Elaine J. Chiao;Kavya Boyapati;Keerti Boyapati;Sarah Short;Adrianna L. Bartolomucci;Stephen Cristiano;Shashikant Koul;Nicholas A. Vulpescu;Leonardo Ferreira;Jamie E. Medina;Daniel C. Bruhm;Vilmos Adleff;Małgorzata Podstawka;Patrycja Stanisławska;Chul-Kee Park;Judy Huang;Gary L. Gallia;Henry Brem;Debraj Mukherjee;Justin M. Caplan;Jon Weingart;Christopher M. Jackson;Michael Lim;Jillian Phallen;Robert B. Scharpf;Victor E. Velculescu
Cancer Discovery  Published:May 26 2025
DOI:https://doi.org/10.1158/2159-8290.CD-25-0074

Abstract

Diagnostic delays in patients with brain cancer are common and can impact patient outcome. Development of a blood-based assay for detection of brain cancers could accelerate brain cancer diagnosis. In this study, we analyzed genome-wide cell-free (cfDNA) fragmentomes, including fragmentation profiles and repeat landscapes, from the plasma of individuals with (n = 148) or without (n = 357) brain cancer. Machine learning analyses of cfDNA fragmentome features detected brain cancer across all-grade gliomas (AUC = 0.90; 95% confidence interval, 0.87–0.93), and these results were validated in an independent prospectively collected cohort. cfDNA fragmentome changes in patients with gliomas represented a combination of fragmentation profiles from glioma cells and altered white blood cell populations in the circulation. These analyses reveal the properties of cfDNA in patients with brain cancer and open new avenues for noninvasive detection of these individuals.

Significance:

Brain cancer is one of the deadliest and most challenging cancers to detect with liquid biopsy approaches in blood, hampering efforts for earlier noninvasive diagnosis. We have developed a machine learning genome-wide cfDNA fragmentation method that provides a sensitive and accessible approach for brain cancer detection.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました