心停止を予測するAI開発(AI predicts patients likely to die of sudden cardiac arrest)

ad

2025-07-02 ジョンズ・ホプキンス大学(JHU)

心停止を予測するAI開発(AI predicts patients likely to die of sudden cardiac arrest)
A contrast-enhanced cardiac MRI of a patient with hypertrophic cardiomyopathy deemed by MAARS to be at high risk for sudden death. Each image slice through the heart goes from dark (normal heart tissue) to bright (fibrotic, abnormal tissue). AI marks in red areas with the most fibrosis. Image credit: Johns Hopkins University

ジョンズ・ホプキンス大学の研究者が開発したAIモデル「MAARS」は、造影MRIやカルテ情報など複数の医療データを統合解析し、突発性心臓死のリスクを高精度(全体で89%、40〜60歳で93%)で予測する。心筋の瘢痕パターンなど医師では捉えにくい特徴を検出し、説明可能な個別化リスク評価を実現。将来的には他の心疾患への応用や臨床導入を目指し、過剰・過小治療の回避に貢献することが期待される。

<関連情報>

肥大型心筋症における不整脈死を予測するマルチモーダルAI Multimodal AI to forecast arrhythmic death in hypertrophic cardiomyopathy

Changxin Lai,Minglang Yin,Eugene G. Kholmovski,Dan M. Popescu,Dai-Yin Lu,Erica Scherer,Edem Binka,Stefan L. Zimmerman,Jonathan Chrispin,Allison G. Hays,Dermot M. Phelan,M. Roselle Abraham & Natalia A. Trayanova
Nature Cardiovascular Research  Published:02 July 2025
DOI:https://doi.org/10.1038/s44161-025-00679-1

Abstract

Sudden cardiac death from ventricular arrhythmias is a leading cause of mortality worldwide. Arrhythmic death prognostication is challenging in patients with hypertrophic cardiomyopathy (HCM), a setting where current clinical guidelines show low performance and inconsistent accuracy. Here, we present a deep learning approach, MAARS (Multimodal Artificial intelligence for ventricular Arrhythmia Risk Stratification), to forecast lethal arrhythmia events in patients with HCM by analyzing multimodal medical data. MAARS’ transformer-based neural networks learn from electronic health records, echocardiogram and radiology reports, and contrast-enhanced cardiac magnetic resonance images, the latter being a unique feature of this model. MAARS achieves an area under the curve of 0.89 (95% confidence interval (CI) 0.79–0.94) and 0.81 (95% CI 0.69–0.93) in internal and external cohorts and outperforms current clinical guidelines by 0.27–0.35 (internal) and 0.22–0.30 (external). In contrast to clinical guidelines, it demonstrates fairness across demographic subgroups. We interpret MAARS’ predictions on multiple levels to promote artificial intelligence transparency and derive risk factors warranting further investigation.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました