脳の独特な皺はなぜ生まれるのか?(What gives our brains their distinctive wrinkles?)

ad

2025-08-28 マックス・プランク研究所

Max Planck Institute for Biological Intelligence の研究で、脳の表面に独特な溝(裂)と隆起(回)の形成メカニズムが、遺伝的制御による細胞の接着力や前駆細胞の数の変化によって引き起こされることが明らかになりました。遺伝子操作により、神経細胞の接着力を弱めつつ、前駆細胞(神経へ分化する元となる細胞)を増やした結果、マウスの滑らかな脳皮質に複雑な溝と隆起が形成され、人間に類似した脳の形状が再現されました。さらに、前駆細胞の種類を増やす操作によって「裂(sulci)」や「回(gyri)」の形成に偏りが生じることも示されました。これらの成果は、脳の発生や進化、個体差、疾患との関連性を理解する上で重要な手がかりとなります。なお、この研究成果はNature Communications誌に発表されました。

脳の独特な皺はなぜ生まれるのか?(What gives our brains their distinctive wrinkles?)
How do wrinkles form in the brain? Researchers compared brain sections of mice with different genetic changes. Using colored markers, they distinguished between the upper and lower layers of the developing cortex and highlighted different types of neurons. © MPI for Biological Intelligence / Seung Hee Chun

<関連情報>

前駆細胞の増殖と接着制御による神経細胞移動の複合作用による大脳皮質の折り畳み Cortex folding by combined progenitor expansion and adhesion-controlled neuronal migration

Seung Hee Chun,Da Eun Yoon,D. Santiago Diaz Almeida,Mihail Ivilinov Todorov,Tobias Straub,Tobias Ruff,Wei Shao,Jianjun Yang,Gönül Seyit-Bremer,Yi-Ru Shen,Ali Ertürk,Daniel del Toro,Songhai Shi & Rüdiger Klein
Nature Communications  Published:28 August 2025
DOI:https://doi.org/10.1038/s41467-025-62858-9

Abstract

Folding of the mammalian cerebral cortex into sulcal fissures and gyral peaks is the result of complex processes that are incompletely understood. Previously we showed that genetic deletion of Flrt1/3 adhesion molecules causes folding of the smooth mouse cortex into sulci resulting from increased lateral dispersion and faster neuron migration, without progenitor expansion. Here, we show in mice that combining the Flrt1/3 double knockout with an additional genetic deletion that causes progenitor expansion, greatly enhances cortex folding. Expansion of intermediate progenitors by deletion of Cep83 leads to a relative increase in Flrt-mutant neurons resulting in enhanced formation of sulci. Expansion of apical progenitors by deletion of Fgf10 leads to a relative reduction in Flrt-mutant neurons resulting in enhanced formation of gyri. These results together with computational modeling identify key developmental mechanisms, such as adhesive properties, cell densities and migration of cortical neurons, that cooperate to promote cortical gyrification.

 

FLRT接着分子を介した神経細胞移動制御による大脳皮質折り畳みの調節 Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules

Daniel del Toro ∙ Tobias Ruff ∙ Erik Cederfjäll ∙ … ∙ Gönül Seyit-Bremer ∙ Víctor Borrell ∙ Rüdiger Klein
Cell  Accepted: April 7, 2017
DOI:https://doi.org/10.1016/j.cell.2017.04.012

Highlights

  • Flrt1/3 double-knockout mice develop macroscopic cortical sulci
  • Cortex folding in mutant mice does not require progenitor cell amplification
  • Absence of FLRT1/3 reduces intercellular adhesion and promotes immature neuron migration
  • FLRT1/3 levels are low in the cortices of human embryos and future sulci of the ferret

Summary

The folding of the mammalian cerebral cortex into sulci and gyri is thought to be favored by the amplification of basal progenitor cells and their tangential migration. Here, we provide a molecular mechanism for the role of migration in this process by showing that changes in intercellular adhesion of migrating cortical neurons result in cortical folding. Mice with deletions of FLRT1 and FLRT3 adhesion molecules develop macroscopic sulci with preserved layered organization and radial glial morphology. Cortex folding in these mutants does not require progenitor cell amplification but is dependent on changes in neuron migration. Analyses and simulations suggest that sulcus formation in the absence of FLRT1/3 results from reduced intercellular adhesion, increased neuron migration, and clustering in the cortical plate. Notably, FLRT1/3 expression is low in the human cortex and in future sulcus areas of ferrets, suggesting that intercellular adhesion is a key regulator of cortical folding across species.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました