RNAの多様性の鍵となる異常な分子構造を発見(Unusual molecular conformation could help explain RNA’s versatility)

ad

2025-09-09 ペンシルベニア州立大学(Penn State)

ペンシルベニア州立大学の研究チームは、RNAの多機能性を支える新たな分子構造「シフト・ウォブル」を発見した。RNAの塩基グアニン(G)とウラシル(U)は、従来“ウォブル”と呼ばれる結合形態を取ることが知られていたが、今回、位置がずれた変異型構造が存在することが明らかになった。研究者らは3000件以上の高精度RNA構造データをケミインフォマティクスで解析し、さらに化学試薬DMSによる反応実験でシフト・ウォブルの存在を確認した。この構造は特に細菌由来のRNAで頻度が高く、細菌特異的な薬剤開発の新たな標的になる可能性がある。成果はRNAの構造的柔軟性と機能多様性の理解を深め、創薬にも新しい方向性を示すものであり、『Nucleic Acids Research』に掲載された。

RNAの多様性の鍵となる異常な分子構造を発見(Unusual molecular conformation could help explain RNA’s versatility)When the sidechain bases guanine (G) and uracil (U) are paired in the 3D structure of a molecule of ribonucleic acid (RNA) the unusual pairing creates an unusual molecular conformation called a “wobble,” pictured on the left. New research shows that non-covalent modifications to the bases can further alter the conformation creating a “shifted wobble,” shown on the right. This conformational diversity could help explain RNAs function versatility, according to the researchers. Credit: Md Sharear Saon/Bevilacqua Lab / Penn State. Creative Commons

<関連情報>

RNAの代替プロトン化に起因するシフトしたG・Uウォブル対の同定と特性評価 Identification and characterization of shifted G•U wobble pairs resulting from alternative protonation of RNA

Md Sharear Saon, Catherine A Douds, Andrew J Veenis, Ashley N Pearson, Neela H Yennawar, Philip C Bevilacqua
Nucleic Acids Research  Published:22 July 2025
DOI:https://doi.org/10.1093/nar/gkaf575

Abstract

RNA can serve as an enzyme, small molecule sensor, and vaccine, and it may have been a conduit for the origin of life. Despite these profound functions, RNA is thought to have limited molecular diversity. A pressing question is whether RNA can adopt novel molecular states that enhance its function. Covalent modifications of RNA have been demonstrated to augment biological function, but much less is known about non-covalent alterations such as novel protonated or tautomeric forms. Conventionally, a G•U wobble has the U located in the major groove. We used a cheminformatic approach to identify four structural families of shifted G•U wobbles in which the G instead resides in the major groove, which requires alternative tautomeric states of either base, or an anionic state of the U. We provide experimental support for these shifted G•U wobbles via the unconventional in vivo reactivity of the U with dimethylsulfate (DMS). These shifted wobbles may play functional roles and could serve as drug targets, as they are common in Bacteria and chloroplasts, but underrepresented in Eukaryotes and Archaea. Our cheminformatics approach can be applied to identify alternative protonation states in other RNA motifs, as well as in DNA and proteins.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました