AIで改良されたナノ粒子による薬物送達システムを開発(AI Engineers Nanoparticles for Improved Drug Delivery)

ad

2025-09-22 デューク大学

デューク大学の生体医工学研究チームは、AIと自動化実験を組み合わせた新しいナノ粒子設計プラットフォーム「TuNa-AI」を開発しました。TuNa-AIは薬剤成分と賦形剤の最適比率を探索でき、従来法に比べ42.9%高い成功率で安定したナノ粒子を形成。難包埋性抗がん剤ベネトクラクスを用いた実験では溶解性と抗白血病効果を改善し、別の抗がん剤では発がん性の可能性がある賦形剤使用量を75%削減しつつ有効性を維持しました。この成果はACS Nano誌に掲載され、難治性薬剤の送達効率化や副作用低減に貢献し、がん治療を含む幅広い臨床応用が期待されます。

<関連情報>

TuNa-AI:薬物送達のための調整可能なナノ粒子を設計するハイブリッドカーネルマシン TuNa-AI: A Hybrid Kernel Machine To Design Tunable Nanoparticles for Drug Delivery

Zilu Zhang,Yan Xiang,Joe Laforet Jr.,Ivan Spasojevic,Ping Fan,Ava Heffernan,Christine E. Eyler,Kris C. Wood,Zachary C. Hartman,and Daniel RekerPublished: September 11, 2025
DOI:https://doi.org/10.1021/acsnano.5c09066

Abstract

AIで改良されたナノ粒子による薬物送達システムを開発(AI Engineers Nanoparticles for Improved Drug Delivery)

Artificial intelligence (AI) has the potential to transform nanoparticle development for drug delivery; however, existing strategies typically optimize either material selection or component ratios in isolation. To enable simultaneous optimization of both, we integrated an automated liquid handling platform with machine learning to systematically explore the nanoparticle formulation space. A data set comprising 1275 distinct formulations (spanning drug molecules, excipients, and synthesis molar ratios) was generated, resulting in a 42.9% increase in successful nanoparticle formation through composition optimization. We developed a bespoke hybrid kernel machine that couples molecular feature learning with relative compositional inference, enhancing the modeling of formulation outcomes across chemical spaces. This hybrid kernel significantly improved prediction performance across three kernel-based algorithms, with a support vector machine (SVM) achieving superior performance when using our kernel compared to standard kernels and outperforming all other machine learning architectures, including transformer-based deep neural networks. Using SVM-guided predictions, we successfully formulated the difficult-to-encapsulate venetoclax with optimized taurocholic acid ratios, yielding enhanced in vitro efficacy against Kasumi-1 leukemia cells. In a second case study, our AI-guided platform reduced excipient usage by 75% in a trametinib formulation while preserving the in vitro efficacy and in vivo pharmacokinetics relative to the standard formulation. Taken together, this study establishes a generalizable framework that combines robotic experimentation, kernel machine learning, and experimental validation to accelerate nanoparticle composition optimization for drug delivery.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました