複雑組織内のRNA活性を可視化する新技術を開発(New technique offers bigger and better window into RNA activity in complex tissue)

ad

2025-10-02 イェール大学

イェール大学の研究チームは、新技術RAEFISH(Reverse-padlock Amplicon Encoding FISH)を開発し、細胞や組織内でRNA分子の位置と活動を同時に高精度観察できるようにした。従来法の「詳細か範囲か」という制約を克服し、2万以上の遺伝子由来RNAを同時検出可能。ヒト細胞やマウス組織での実験では、細胞型の空間配置や相互作用を可視化した。これにより、発生・加齢・がんなどの過程でどの遺伝子がどこで働くかを解析でき、新たな疾患バイオマーカー探索にもつながる。成果は『Cell』誌に掲載された。

<関連情報>

単一分子解像度でのシーケンシングフリー全ゲノム空間トランスクリプトミクス Sequencing-free whole-genome spatial transcriptomics at single-molecule resolution

Yubao Cheng ∙ Shengyuan Dang ∙ Yuan Zhang ∙ … ∙ Ailin Han ∙ Samuel Katz ∙ Siyuan Wang
Cell  Published:October 1, 2025
DOI:https://doi.org/10.1016/j.cell.2025.09.006

Graphical abstract

複雑組織内のRNA活性を可視化する新技術を開発(New technique offers bigger and better window into RNA activity in complex tissue)

Highlights

  • RAEFISH enables genome-scale spatial transcriptome imaging with high resolution
  • An efficient and robust probing and readout scheme that covers long and short transcripts
  • RAEFISH maps spatially dependent transcriptomes in diverse cell and tissue contexts
  • RAEFISH enables direct readout of gRNAs in image-based, high-content CRISPR screens

Summary

Recent breakthroughs in spatial transcriptomics technologies have enhanced our understanding of diverse cellular identities, spatial organizations, and functions. Yet existing spatial transcriptomics tools are still limited in either transcriptomic coverage or spatial resolution, hindering unbiased, hypothesis-free transcriptomic analyses at high spatial resolution. Here, we develop reverse-padlock amplicon-encoding fluorescence in situ hybridization (RAEFISH), an image-based spatial transcriptomics method with whole-genome coverage and single-molecule resolution in intact tissues. We demonstrate the spatial profiling of transcripts from 23,000 human or 22,000 mouse genes in single cells and tissue sections. Our analyses reveal transcript-specific subcellular localization, cell-type-specific and cell-type-invariant zonation-dependent transcriptomes, and gene programs underlying preferential cell-cell interactions. Finally, we further develop our technology for the direct spatial readout of guide RNAs (gRNAs) in an image-based, high-content CRISPR screen. Overall, these developments offer a broadly applicable technology that enables high-coverage, high-resolution spatial profiling of both long and short, native and engineered RNAs in many biomedical contexts.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました