産業用AI技術を応用し、立方体を模写するという簡易的な検査により、認知症の進行リスクを高精度で予測するモデルを世界で初めて開発

ad

2025-11-05 長寿医療研究センター

国立長寿医療研究センターは、産業用AI技術を応用し、立方体模写課題の筆跡データから認知症進行リスクを予測するモデルを世界で初めて開発した。被験者が描く線の速度・角度・筆圧などを数値化し、AIが解析することで、軽度認知障害(MCI)から認知症への進行を高精度で予測可能とした。従来の検査より短時間かつ非侵襲で実施でき、在宅・遠隔診断への応用も期待される。モデルは産業用異常検知AIを医療向けに転用して構築され、従来比で診断精度を大幅に向上させた。

産業用AI技術を応用し、立方体を模写するという簡易的な検査により、認知症の進行リスクを高精度で予測するモデルを世界で初めて開発

図1 本研究で使用した立方体模写検査(CCT)の検査用紙(A4サイズ)

<関連情報>

キューブ複写テストを用いた認知症への移行を予測する機械学習モデル Machine learning model for predicting the conversion to dementia using the Cube Copying Test

Mio Shinozaki, Hiroyuki Hishida, […], and Yutaka Arahata
Journal of Alzheimer’s Disease  Published:September 22, 2025
DOI:https://doi.org/10.1177/13872877251376939

Abstract

Background

Early detection of dementia requires highly accurate and efficient screening tests that minimize patient burden.

Objective

To develop a machine learning model predicting dementia conversion within 3–5 years using Cube Copying Test (CCT) drawings at baseline.

Methods

This retrospective study analyzed CCT drawing data from 767 patients at the Center for Comprehensive Care and Research on Memory Disorders (2011–2020). Of the 2303 patients who met the inclusion criteria, 534 were excluded due to mild cognitive impairment (MCI) persistence, pending diagnoses, or new neurovascular diseases, while 1002 were lost to follow-up. Eligibility criteria included a baseline Mini-Mental State Examination (MMSE) score ≥24, absence of dementia diagnosis or anti-dementia medication intake, and completion of a 3–5-year follow-up without meeting exclusion criteria.

Results

Of 767 patients, 457 converted to dementia (318 with Alzheimer’s disease, 116 with dementia with Lewy bodies, and 23 with frontotemporal dementia) within 3–5 years, while 310 did not. The model achieved an area under the curve of 0.85 for predicting dementia conversion. Shapley Additive exPlanations analysis identified PatchCore-derived features as the strongest predictors, distinguishing drawing patterns of converters and non-converters.

Conclusions

In patients who convert to Alzheimer’s disease, dementia with Lewy bodies, or frontotemporal dementia, the very early stages of constructional apraxia-like symptoms already exist at the preclinical stage or MCI stage. Applying deep learning-based anomaly-detection models can detect these early drawing distortions that differ from normal aging and contribute to improving the performance of dementia-conversion prediction.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました