紫外線・オゾンによる細胞足場材料の条件最適化機構の解明~材料の物理化学的変化から細胞応答までのプロセスを解析~

ad

2025-11-11 東京科学大学

Web要約 の発言:
東京科学大学の林智広准教授らは、紫外線・オゾン(UVO)照射により細胞足場材料の接着性が最大化する仕組みを分子レベルで解明した。短時間の照射で親水性と疎水性が混在した表面が形成され、細胞接着に重要なフィブロネクチンやビトロネクチンが最も効率的に吸着・固定されることが判明。長時間照射では過酸化が進み逆に接着性が低下する。再生医療や創薬支援、医療用インプラント材料設計における明確な最適化指針を提供する成果。

紫外線・オゾンによる細胞足場材料の条件最適化機構の解明~材料の物理化学的変化から細胞応答までのプロセスを解析~
図1.本研究手法で明らかとなった紫外線/オゾン処理による界面の変化と細胞接着への影響

<関連情報>

細胞接着を強化するためのポリマー表面のUV/オゾン処理:そのメカニズムと最適化のガイドライン UV/Ozone Treatment of Polymer Surfaces to Enhance Cell Adhesion: The Mechanism and Guidelines for Optimization

Riko Kaizu,Seiichiro Takahashi,Kenichi Hirose,Kenji Hatakeyama,Glenn Villena Latag,Ayano Nomura,Hiroyuki Tahara,and Tomohiro Hayashi
Langmuir  Published: October 22, 2025
DOI:https://doi.org/10.1021/acs.langmuir.5c03398

Abstract

Despite the widespread use of UV/ozone (UVO) treatments to improve cell adhesion and proliferation on polymer substrates, a complete understanding of the mechanism has not been achieved. This study investigates the effect of UVO treatment on the physicochemical properties of polymer surfaces (polystyrene and cyclo-olefin polymer) and protein adsorption, focusing on its impact on cell adhesion and the underlying mechanisms. UVO treatment with short time (1 or 2 min) significantly enhances cell adhesion, whereas treatment longer than 10 min results in poor adhesion. The treatment introduces oxygen-containing functional groups and increases wettability; however, the results indicate that wettability alone is not a determining factor for cell adhesion. Atomic force microscopy (AFM) imaging revealed nanoscale structural changes on treated surfaces, while enzyme-linked immunosorbent assay (ELISA) and quartz crystal microbalance with energy dissipation (QCM-D) analysis demonstrated that protein adsorption and denaturation are influenced by treatment duration. Additionally, the study observed the Vroman effect, showing that protein exchange on UVO-treated surfaces changes the composition of the protein layer. It was further suggested that on surfaces with short UVO treatment, fibronectin (FN) and vitronectin (VN) trapped on remaining hydrophobic areas serve as cell recognition sites, thus promoting adhesion. Overall, these findings reveal that UVO treatment duration influences protein adsorption on polymer surfaces and improves cell attachment, offering valuable insights for designing better tissue culture surfaces and enhancing material-cell interactions in biomedical contexts.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました