初の完全合成脳組織モデルを開発(Scientists engineer first fully synthetic brain tissue model)

ad

2025-11-17 カリフォルニア大学リバーサイド校(UCR)

カリフォルニア大学リバーサイド校の研究チームは、動物由来成分を一切使用しない、完全合成の脳組織モデルを初めて開発した。ポリエチレングリコール(PEG)を基材とし、細胞が付着・成長しやすい迷路状かつ多孔質の足場構造を設計することで、幹細胞由来の神経細胞が三次元的なネットワークを形成し、脳に類似した振る舞いを示すことを確認した。この技術は、従来の動物実験や動物由来材料に依存しない神経疾患研究や薬剤評価を可能にし、より再現性と倫理性の高い研究環境を提供すると期待される。現在は厚さ約2ミリのモデルだが、将来的には臓器間相互作用を再現する複合的な組織モデルへの拡張も構想されている。

初の完全合成脳組織モデルを開発(Scientists engineer first fully synthetic brain tissue model)
The new brain tissue model could enable significant advancements in neurological research. (Mohammed Haneefa Nizamudeen/iStock/Getty)

<関連情報>

二連続マイクロアーキテクチャスキャフォールドは神経細胞の行動と成熟を制御する地形的手がかりを提供する Bicontinuous Microarchitected Scaffolds Provide Topographic Cues That Govern Neuronal Behavior and Maturation

Prince D. Okoro, Kevin Dalsania, Shiril B. Iragavarapu, Benjamin Dela Cruz, Aihik Banerjee, Merve Basaranbilek, Martin F. Haase, Bahman Anvari, Iman Noshadi
Advanced Functional Materials  Published: 01 October 2025
DOI:https://doi.org/10.1002/adfm.202509452

Abstract

3D tissue-engineered models hold great promise for recreating the intricate architecture and dynamic functions of neural tissues. However, replicating the nuanced structural cues of the brain in vitro remains challenging, as existing platforms often fail to capture the precise architectural motifs that regulate biological responses. Here, a bicontinuous interfacially jammed emulsion gel (bijel)-based fabrication strategy that combines solvent transfer-induced phase separation (STrIPS), microfluidics, and bioprinting to develop a Bijel-Integrated PORous Engineered System (BIPORES) for neural tissue engineering is introduced. This multifaceted approach yields scaffolds featuring interconnected micropores and textured surfaces interspersed with a hyperbolic curvature, seamlessly integrated within macroscale fibrous networks. By leveraging STrIPS of a ternary precursor mixture stabilized by amphiphilic nanoparticles, we synthesized poly(ethylene glycol) diacrylate (PEGDA) BIPORES support neural stem cell adhesion within 30 s without additional biological factors—a first for PEGDA scaffolds. Long-term cultures demonstrate extensive migration, robust proliferation, and differentiation into neuronal and astrocytic lineages, forming 3D networks with enhanced synaptic activity. Collagen encapsulation amplifies 3D cell growth, simulating native neuroanatomical compartmentalization. From a biomimicry standpoint, this multiscale fabrication strategy better approximates native neural tissue dynamics with significant implications for disease modeling, drug screening, and regenerative therapies.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました