3Dプリントで血管新生用の足場構造を開発(3D-Printed Scaffolds for New Blood Vessels)

ad

2025-12-09 ウースター工科大学(WPI)

WPI の研究チームは、3Dプリント技術を用いて新しい血管形成を促す生体足場(スキャフォールド)を開発した。従来の人工血管は生体適合性や長期安定性に課題があったが、今回の足場は微細チャネル構造と材料特性を組み合わせることで、細胞が自然な配置で増殖し、周囲組織と統合しながら血管ネットワークを形成できる点が特徴である。研究では、ヒドロゲル系材料をベースにした足場内で血管内皮細胞が高い生存率を示し、機械的刺激の付与によってより成熟した血管構造を生むことが確認された。さらに、足場は患者ごとの解剖学的形状に合わせてカスタマイズでき、治療が困難な虚血組織、創傷治癒、臓器再生への応用が期待される。研究者は、3Dバイオプリンティングと生体材料科学の融合が、再生医療における血管形成の大きなブレークスルーになると強調している。

3Dプリントで血管新生用の足場構造を開発(3D-Printed Scaffolds for New Blood Vessels)

Yonghui Ding, left, and an illustration of a 3D-printed blood vessel scaffold

<関連情報>

3D細胞配列を誘導するための表面トポグラフィーを備えたナノ多孔質スキャフォールドのマルチスケール3Dプリント Multiscale 3D Printing of Nanoporous Scaffolds with Surface Topography for Guiding 3D Cell Alignment

Rao Fu, Evan Jones, Ni Chen, Boyuan Sun, Biao Si, Zhenglun Alan Wei, Guillermo Ameer, Cheng Sun, Yonghui Ding
Advanced Healthcare Materials  Published: 21 October 2025
DOI:https://doi.org/10.1002/adhm.202504630

Abstract

Engineering biomaterial scaffolds with hierarchical structures that integrate macroscale architecture with micro/nanoscale features is essential for directing cellular organization and tissue regeneration. However, fabricating such multiscale scaffolds remains a challenge due to the limitations of conventional techniques and the speed-resolution trade-off in current 3D printing methods. Here, a multiscale micro-continuous liquid interface production (MµCLIP) method is presented, combined with polymerization-induced phase separation, to enable rapid, one-step 3D printing of centimeter-scale scaffolds featuring microscale surface topography and nanoscale porosity. MµCLIP achieves unprecedented structural resolution across five orders of magnitude (20 nm–1 cm) at high printing speed of up to 1.85 mm min-1. As a proof of concept, a 1cm-long tubular scaffold with interconnected nanopores (20–260 nm) and dual surface topographies: 15 µm circumferential rings on outer surface and 20 µm longitudinal grooves on luminal surface is fabricated. These topographies directed orthogonal alignment of vascular smooth muscle cells and endothelial cells, closely recapitulating the architecture of native arteries. Additionally, surface grooves significantly enhanced endothelial cell migration within scaffolds, suggesting a promising approach for accelerating re-endothelialization. This study establishes MµCLIP as a versatile platform for integrating distinct topographies into 3D scaffolds, opening new opportunities for regenerative implants and biomimetic tissue models.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました