概日時計の脳信号を追跡する新手法を発見(Mapping the dance of circadian synchrony)

ad

2025-12-22 ワシントン大学セントルイス校(WUSTL)

ワシントン大学セントルイス校の研究チームは、体内時計(概日リズム)が細胞や組織間でどのように同期しているかを可視化・解析する新たな手法を開発した。概日リズムは睡眠、代謝、免疫など多くの生理機能を制御しているが、個々の細胞がどのように協調して正確な周期を保つのかは十分に理解されていなかった。本研究では、遺伝子発現の時間変化を高解像度で追跡し、数理モデルと組み合わせることで、細胞集団が相互作用しながらリズムを揃える動的パターンを明らかにした。結果として、同期は一様に起こるのではなく、細胞間の結合強度や環境条件に応じて変化することが示された。この成果は、睡眠障害や代謝疾患、時差ボケなど、概日リズムの乱れに関連する疾患理解や治療戦略の基盤となる知見を提供している。

概日時計の脳信号を追跡する新手法を発見(Mapping the dance of circadian synchrony)
Researchers at WashU are mapping the gears that control circadian rhythms. (Photo: Shutterstock)

<関連情報>

マウス視交叉上核における概日リズム同期の基礎となる機能コネクトームの推定 The inferred functional connectome underlying circadian synchronization in the mouse suprachiasmatic nucleus

K. L. Nikhil, Bharat Singhal, Daniel Granados-Fuentes, +2 , and Erik D. Herzog
Proceedings of the National Academy of Sciences  Published:December 11, 2025
DOI:https://doi.org/10.1073/pnas.2520674122

Significance

Linking cellular activity to network-level computation remains a major goal in neuroscience. We introduce a robust method to infer directed, functional cell–cell connectivity in large cell populations. Using information theory and live-cell imaging of circadian gene expression, we uncover how the suprachiasmatic nucleus network drives properties such as jetlag and daily dorsal–ventral activity waves. We find that specific, reliable, and sparse connectivity patterns, along with molecular identity, generate and coordinate ensemble behavior. These findings establish a general framework for decoding cell communication and show how network topology shapes computation in distributed cellular systems.

Abstract

Circadian rhythms in mammals arise from the spatiotemporal synchronization of ~20,000 neuronal clocks in the suprachiasmatic nucleus (SCN). Although anatomical, molecular, and genetic approaches have revealed diverse SCN cell types, how network-level wiring enables their synchronization remains unclear. To overcome the challenges of inferring functional connectivity from fixed tissue, we developed Mutual Information & Transfer Entropy (MITE), an information-theoretic framework to infer directed cell–cell connections with high fidelity from long-term live-cell imaging. Recording and analyzing 3,290 h of clock gene expression from 8,261 SCN neurons across 17 mice, we uncovered a highly conserved, sparse SCN network organized into two asymmetrically coupled modules: dorsal and ventral. Connectivity analyses revealed five functional SCN cell types independent of neurochemical identity. Notably, only ~30% of vasoactive intestinal peptide neurons exhibited Hub-like connectivity, classifying them as Generators and Broadcasters of synchrony signals. Other spatially stereotyped cell types consistently identified as Bridges, Receivers, or Sinks. Simulations based on MITE-inferred connectomes recapitulated emergent SCN dynamics, including recovery from desynchrony and the daily dorsal-to-ventral phase wave of gene expression. Together, these results demonstrate that MITE enables precise mapping of cellular network topology, revealing the circuit logic and key cell types that mediate circadian synchrony across space and time in the mammalian SCN.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました