急性期脳内出血患者の血腫増大予測AIモデルを開発~脳神経外科専門医不在状況下における標準的な治療方針選択の支援を目指す~

ad

2026-01-05 国立循環器病研究センター

循環器病対策情報センターの研究チームは、急性期脳内出血患者における24時間以内の血腫増大を予測するAIモデルを開発した。日本国内10施設(J-ASPECT Study参加施設)の患者452例を対象に、救急搬送時に取得しやすい年齢・性別・抗凝固薬使用歴などの臨床情報と、CT画像から半自動で算出したRadiomics特徴量を組み合わせて学習させた。その結果、両者を統合したモデルはROC AUC 0.77と最も高い予測性能を示した。解釈性の高い勾配ブースティング決定木を用いることで、血腫増大に関連する要因提示も可能とした。本モデルは脳神経外科専門医不在の救急現場における標準的治療方針選択を支援し、予後改善への貢献が期待される。

<関連情報>

脳内血腫の拡大を予測するための臨床応用可能な機械学習アプローチ Clinically Applicable Machine Learning Approach to Predict Intracerebral Hematoma Expansion

Shogo Watanabe, PhD, Nice Ren, MD, PhD, Yukihiro Imaoka, MD, PhD, Kento Morita, PhD, Syoji Kobashi, PhD, Nobutaka Mukae, MD, PhD, Koichi Arimura, MD, PhD, Kunihiro Nishimura, MD, PhD, and Koji Iihara, MD, PhD
Journal of the American Heart Association  Published: 30 December 2025
DOI:https://doi.org/10.1161/JAHA.125.042387

Abstract

Background

Hematoma expansion (HE) is a significant risk factor for poor prognosis in patients with intracerebral hemorrhage (ICH). Accurately predicting HE is crucial for determining optimal treatment strategies.

Methods

This study enrolled 452 patients with ICH from 10 hospitals. To predict HE, 28 clinical variables available on patient arrival (including medical history, ICH location, and ICH volume) and 1142 radiomics features extracted from noncontrast computed tomography images of the ICH regions were used. Clinical variables and radiomics features were selected using gradient boosting and the least absolute shrinkage and selection operator. Three HE prediction models were built on clinical variables alone, radiomics features alone, and a third combining both. The models were compared using 5‐fold cross‐validation, and the mean area under the receiver operating characteristic curve was calculated for each. Additionally, the important features of HE prediction in the combined model were explored.

Results

The combined model demonstrated the highest performance for predicting HE with a 5‐fold mean area under the receiver operating characteristic curve of 0.77±0.05, compared with 0.70±0.06 for the clinical variables alone and 0.73±0.04 for the radiomics features alone. Permutation feature importance analysis suggested that anticoagulant treatment was the most predictive of HE.

Conclusions

A predictive model for HE was developed using the medical history, clinical features available on the patient’s arrival, imaging, and radiomics features extracted from computed tomography images. This prediction model will assist non–stroke care specialists in making treatment decisions for ICH in emergency settings.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました