AIによる心電図解析がCOPD早期発見の可能性を示す(AI-powered ECG analysis offers promising path for early detection of chronic obstructive pulmonary disease, say Mount Sinai researchers)

ad

2026-01-06 マウントサイナイ医療システム(MSHS)

米マウントサイナイ医療システムの研究チームは、AIを用いた心電図(ECG)解析により慢性閉塞性肺疾患(COPD)を早期検出できる可能性を示した。COPDは初期症状が乏しく、診断が遅れやすい疾患である。本研究では、通常は心疾患評価に使われるECGデータを深層学習モデルで解析し、肺機能低下に関連する微細な電気的特徴を抽出した。その結果、従来の検査を受けていない患者でも、COPDの存在やリスクを高い精度で予測できることが分かった。ECGは安価で広く普及しているため、この手法は大規模スクリーニングやプライマリケアでの活用が期待される。研究成果は、AIが心臓データから全身疾患を検出できる可能性を示し、呼吸器疾患の早期介入と医療負担軽減に貢献する。

<関連情報>

心電図にディープラーニングを適用した慢性閉塞性肺疾患の自動診断 Automated diagnosis of chronic obstructive pulmonary disease using deep learning applied to electrocardiograms

Akhil Vaid, Jiya Sharma, Joy Jiang, Joshua Lampert, Ashwin Sawant, Edgar Argulian, Stamatios Lerakis, Pranai Tandon, Patricia Kovatch, Charles Powell, Charles B. Cairns, Girish N. Nadkarni, Monica Kraft
eBioMedicine  Available online: 3 January 2026
DOI:https://doi.org/10.1016/j.ebiom.2025.106066

AIによる心電図解析がCOPD早期発見の可能性を示す(AI-powered ECG analysis offers promising path for early detection of chronic obstructive pulmonary disease, say Mount Sinai researchers)

Summary

Background

Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of morbidity and mortality globally. Effective management hinges on early diagnosis, which is often impeded by non-specific symptoms and resource-intensive diagnostic methods. This study assesses the effectiveness of electrocardiograms (ECGs) analysed via deep learning as a tool for early COPD detection.

Methods

We utilised a Convolutional Neural Network model to analyse ECGs for detecting COPD. The primary outcome was the accuracy of a new clinical COPD diagnosis as determined by ICD codes. Performance was evaluated using Area-Under-the-Curve (AUC) metrics derived by testing against ECGs from a set of holdout patients, ECGs from patients from another hospital, and ECGs of patients with COPD within the UK BioBank (UKBB).

Findings

We analysed a total of 208,231 ECGs from 18,225 COPD cases, matched to 49,356 controls by age, sex, and race. The model exhibited robust performance across diverse populations with an AUC of 0⋅80 (0⋅80–0⋅80) in internal testing, 0⋅82 (0⋅81–0⋅82) in external validation and 0⋅75 (0⋅71–0⋅78) in the UKBB cohort. Subsequent analyses linked ECG-derived model predictions with spirometry data, and model explainability highlighted P-wave changes as indicative of COPD.

Interpretation

AI-powered ECG analysis offers a promising path for early COPD detection, potentially facilitating earlier and more effective management. Implementing such tools in clinical settings could significantly enhance COPD screening and diagnostic accuracy, thereby improving patient outcomes and addressing the global health burden of the disease.

Funding

This work was supported in part through the computational and data resources and staff expertise provided by Scientific Computing and Data at the Icahn School of Medicine at Mount Sinai and supported by the Clinical and Translational Science Awards (CTSA) grant UL1TR004419 from the National Center for Advancing Translational Sciences; and R01HL167050-02 from the National Heart, Lung, and Blood Institute.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました