火災後に炭を栄養源とする菌類の遺伝的適応を解明 (How Fire-Loving Fungi Learned to Eat Charcoal)

ad

2026-01-29 カリフォルニア大学リバーサイド校(UCR)

米カリフォルニア大学リバーサイド校(UCR)の研究チームは、火災後の環境で繁栄する「火好性菌」が木炭(チャーコール)を分解できる能力をどのように獲得したかを解明した。研究では、火災後の土壌から分離された菌株のゲノムと代謝系を調査し、これらの菌が炭素源として木炭を直接利用する特異的酵素群を持つことを発見した。これら酵素は、木材燃焼によって生成される芳香族炭化水素を分解し、菌の成長に必要な栄養源へと変換するもので、他の土壌真菌には見られない進化的適応と考えられる。さらに、比較ゲノミクスと系統解析により、こうした機能は火災頻度の高い環境に生育する菌だけに限定的に存在し、生態的選択圧に応じた進化の産物であることが示された。本研究は、火災後の土壌生態系の物質循環や微生物の適応戦略を理解するうえで重要な知見を提供する。

火災後に炭を栄養源とする菌類の遺伝的適応を解明 (How Fire-Loving Fungi Learned to Eat Charcoal)
Pyronema mycelium growing over soil and charcoal. (Maria Ordonez/UCR)

<関連情報>

遺伝子重複、水平遺伝子伝播、および形質トレードオフが好熱菌における火災後の資源獲得の進化を促進する Gene duplication, horizontal gene transfer, and trait trade-offs drive evolution of postfire resource acquisition in pyrophilous fungi

Ehsan Sari, Dylan J. Enright, Maria E. Ordoñez, +3 , and Sydney I. Glassman
Proseedings of the National Academy of Sciences  Published:January 2, 2026
DOI:https://doi.org/10.1073/pnas.2519152123

Significance

Wildfires affect large tracts of the terrestrial biosphere, and while much is understood about plant adaptations to fire, here we uncovered genomic adaptations in fungi that can be modeled to predict impacts on global C and N cycling. We tested theorized trait trade-offs, and showed with genomics and bioassays how evolutionary trade-offs, like prioritizing aromatic C degradation at the expense of rapid growth, enable pyrophilous fungi to thrive postfire. Further, we advance fungal genomics, and reveal the importance of mechanisms like gene duplication, sexual reproduction, and cross-kingdom horizontal gene transfer (HGT) for enabling adaptation and evolutionary diversification in fungi. Finally, we identify fungi that may be useful inoculants to enhance recovery of polluted or burned soils.

Abstract

Wildfires significantly alter soil carbon (C) and nitrogen (N), reducing microbial richness and biomass, while selecting for “fire-loving” pyrophilous microbes that drive postfire nutrient cycling. However, the genomic strategies and functional trade-offs (balancing gains in one trait with costs in another) underlying the traits that enable pyrophilous microbes to survive and thrive postfire are virtually unknown. We hypothesized that pyrophilous fungi employ specialized genomic adaptations for C and N cycling, with evolutionary trade-offs between traits governing aromatic C degradation, N acquisition pathways, and rapid growth. To test these hypotheses, we performed complementary comparative genomics, transcriptomics after pyrogenic organic matter amendment, and growth rate bioassays for 18 pyrophilous fungi from five Ascomycota (Eurotiales, Pleosporales, Sordariales, Coniochaetales, and Pezizales) and three Basidiomycota (Agaricales, Holtermanniales, and Geminibasidiales) orders isolated from burned soils. We found a dramatic trait trade-off between fast growth and number of genes responsible for aromatic C degradation, implying burned environments select for metabolically costly genes despite their evolutionary cost. We used the comparative genomics framework to evaluate genomic signatures of evolution and found that either gene duplication and somatic mutation, or recombination via sexual reproduction, were the primary drivers of fungal genomic variation in aromatic C degradation and N acquisition genes. Finally, we identified cross-kingdom bacterial to fungal horizontal gene transfer (HGT) as a secondary strategy producing novel aromatic C degradation genes. Overall, we found that trait trade-offs and genome evolutionary strategies are key drivers that may predict the persistence and contribution of pyrophilous fungi to global C and N cycling.

生物環境工学
ad
ad
Follow
ad
タイトルとURLをコピーしました