光で酵素を駆動するアンモニア生成技術(Could Light Be Used To Drive Enzymes for Efficient Ammonia Production?)

ad

2026-02-03 国立再生可能エネルギー研究所(NREL)

米国ローレンス・バークレー国立研究所(LBNL)などの研究者は、光を利用して酵素反応を駆動し、アンモニアを高効率に生成する新しい手法の可能性を示した。研究は、自然界で窒素固定を担う酵素に着目し、光エネルギーを化学エネルギーへ変換して反応を促進できるかを検討したものだ。従来のアンモニア製造は高温高圧を必要とし、エネルギー消費や二酸化炭素排出が大きいが、光駆動型の酵素反応が実現すれば、常温常圧に近い条件での持続可能な製造が可能となる。研究成果は、再生可能エネルギーと生物触媒を組み合わせた次世代のグリーンアンモニア生産技術への道を開くものであり、肥料製造やエネルギー貯蔵分野への応用が期待されている。

光で酵素を駆動するアンモニア生成技術(Could Light Be Used To Drive Enzymes for Efficient Ammonia Production?)

The illustration showcases a model complex between a cadmium sulfide quantum dot (yellow sphere) and a molybdenum-iron protein (blue ribbon) during electron transfer, which results in ammonia conversion (shown as blue-white spheres). Illustration by Besiki Kazaishvili, National Laboratory of the Rockies

<関連情報>

ナノクリスタル:モリブデン窒素固定酵素バイオハイブリッドの前定常状態動力学は、正孔消去効率がN 2還元に重要であることを明らかにする Pre-steady-state kinetics of nanocrystal:molybdenum nitrogenase biohybrids reveals hole-scavenging efficiency is critical to N2 reduction

Peter J. Dahl ∙ Lauren M. Pellows ∙ Zhi-Yong Yang ∙ … ∙ Gordana Dukovic ∙ David W. Mulder ∙ Paul W. King

Cell Reports Physical Science  Published:July 30, 2025

DOI:https://doi.org/10.1016/j.xcrp.2025.102732

Highlights

  • Time-resolved detection of light-driven MoFe protein N2 reduction intermediates
  • The first pre-steady-state kinetic model of light-driven ammonia production
  • Describes the inter-relationship of light-driven oxidative and reductive reactions
  • Identifies competing side reactions that inhibit N2 reduction by MoFe protein

Summary

Molybdenum (Mo) nitrogenase is a two-component enzyme complex that catalyzes the reduction of dinitrogen to ammonia and protons to hydrogen gas. We have shown that electrons for dinitrogen reduction can be delivered photochemically to the catalytic MoFe protein component by cadmium sulfide (CdS) nanocrystals. In this study, we used electron paramagnetic resonance spectroscopy to measure the transient populations of catalytic intermediates. We fit the populations with a pre-steady-state kinetic model, which allowed us to distinguish between productive and non-productive reaction pathways and extract the rate constants for the reaction. Our results demonstrated that the rate of catalytic electron delivery into MoFe protein increased with the concentration of the sacrificial electron donor. This enabled electron delivery to exceed the rate of hydride protonation, a relaxation pathway that competes with N2 binding. Thus, managing the balance between electron transfer and hole transfer reactions is required to achieve a kinetic regime that favors N2 reduction.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました