AIと精密医療が心血管疾患のリスクを発見するかもしれない(AI and precision medicine may discover risk of cardiovascular disease)

ad

2023-07-21 カロリンスカ研究所(KI)

◆カロリンスカ研究所とウプサラ大学などの研究者たちは、人工知能(AI)を用いて動脈硬化の個別リスクを特定し、心血管疾患の予防に役立つ新しい技術を開発しました。彼らは、超音波測定や臨床的データなどを機械学習で統合し、低、中、高リスクの「エンドタイプ」と呼ばれるグループに分類して個人のリスクを特定しました。
◆この技術は動脈硬化の早期予測に役立ち、心筋梗塞や脳卒中などの重篤な症状の予防に寄与する可能性があります。さらに、今後は動脈硬化の発症に関連する遺伝子やメカニズムの研究、他の血管部位に対する応用にも取り組む予定です。

<関連情報>

頸動脈潜在性アテローム性動脈硬化症のエンドタイプを特定する機械学習ベースのアプローチ A machine learning based approach to identify carotid subclinical atherosclerosis endotypes

Qiao Sen Chen, Otto Bergman, Louise Ziegler, Damiano Baldassarre, Fabrizio Veglia, Elena Tremoli, Rona J Strawbridge, Antonio Gallo, Matteo Pirro, Andries J Smit,Sudhir Kurl, Kai Savonen, Lars Lind, Per Eriksson, Bruna Gigante
Cardiovascular Research  Published::21 July 2023
DOI:https://doi.org/10.1093/cvr/cvad106

AIと精密医療が心血管疾患のリスクを発見するかもしれない(AI and precision medicine may discover risk of cardiovascular disease)

Abstract

Aims
To define endotypes of carotid subclinical atherosclerosis.

Methods and results
We integrated demographic, clinical, and molecular data (n = 124) with ultrasonographic carotid measurements from study participants in the IMPROVE cohort (n = 3340). We applied a neural network algorithm and hierarchical clustering to identify carotid atherosclerosis endotypes. A measure of carotid subclinical atherosclerosis, the c-IMTmean-max, was used to extract atherosclerosis-related features and SHapley Additive exPlanations (SHAP) to reveal endotypes. The association of endotypes with carotid ultrasonographic measurements at baseline, after 30 months, and with the 3-year atherosclerotic cardiovascular disease (ASCVD) risk was estimated by linear (β, SE) and Cox [hazard ratio (HR), 95% confidence interval (CI)] regression models. Crude estimates were adjusted by common cardiovascular risk factors, and baseline ultrasonographic measures. Improvement in ASCVD risk prediction was evaluated by C-statistic and by net reclassification improvement with reference to SCORE2, c-IMTmean-max, and presence of carotid plaques. An ensemble stacking model was used to predict endotypes in an independent validation cohort, the PIVUS (n = 1061). We identified four endotypes able to differentiate carotid atherosclerosis risk profiles from mild (endotype 1) to severe (endotype 4). SHAP identified endotype-shared variables (age, biological sex, and systolic blood pressure) and endotype-specific biomarkers. In the IMPROVE, as compared to endotype 1, endotype 4 associated with the thickest c-IMT at baseline (β, SE) 0.36 (0.014), the highest number of plaques 1.65 (0.075), the fastest c-IMT progression 0.06 (0.013), and the highest ASCVD risk (HR, 95% CI) (1.95, 1.18–3.23). Baseline and progression measures of carotid subclinical atherosclerosis and ASCVD risk were associated with the predicted endotypes in the PIVUS. Endotypes consistently improved measures of ASCVD risk discrimination and reclassification in both study populations.

Conclusions
We report four replicable subclinical carotid atherosclerosis—endotypes associated with progression of atherosclerosis and ASCVD risk in two independent populations. Our approach based on endotypes can be applied for precision medicine in ASCVD prevention.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました