根から回復力へ:沿岸植物の健康における微生物の重要な役割を探る(From Roots to Resilience: Investigating the Vital Role of Microbes in Coastal Plant Health)

ad

2024-05-15 ジョージア工科大学

ジョージア州の塩性湿地は、主にコルドグラスという植物が支配し、生態系エンジニアとして重要な役割を果たしています。ジョージア工科大学の研究者たちは、コルドグラスとその根に住む微生物群の関係を調査し、硫化物を除去し窒素を供給する役割を果たす微生物を特定しました。これらの微生物は、植物の健康と耐性を向上させるために重要であることが判明しました。さらに、これらの微生物は地球規模で湿地生態系の健康維持にも貢献しており、将来的には微生物と植物の窒素と炭素の交換をさらに詳細に研究する予定です。

<関連情報>

塩性湿地の基盤植物Spartina alternifloraの根における硫黄の酸化と還元は窒素固定と結合している Sulfur oxidation and reduction are coupled to nitrogen fixation in the roots of the salt marsh foundation plant Spartina alterniflora

J. L. Rolando,M. Kolton,T. Song,Y. Liu,P. Pinamang,R. Conrad,J. T. Morris,K. T. Konstantinidis & J. E. Kostka
Nature Communications  Published29 April 2024
DOIhttps://doi.org/10.1038/s41467-024-47646-1

figure 1

Abstract

Heterotrophic activity, primarily driven by sulfate-reducing prokaryotes, has traditionally been linked to nitrogen fixation in the root zone of coastal marine plants, leaving the role of chemolithoautotrophy in this process unexplored. Here, we show that sulfur oxidation coupled to nitrogen fixation is a previously overlooked process providing nitrogen to coastal marine macrophytes. In this study, we recovered 239 metagenome-assembled genomes from a salt marsh dominated by the foundation plant Spartina alterniflora, including diazotrophic sulfate-reducing and sulfur-oxidizing bacteria. Abundant sulfur-oxidizing bacteria encode and highly express genes for carbon fixation (RuBisCO), nitrogen fixation (nifHDK) and sulfur oxidation (oxidative-dsrAB), especially in roots stressed by sulfidic and reduced sediment conditions. Stressed roots exhibited the highest rates of nitrogen fixation and expression level of sulfur oxidation and sulfate reduction genes. Close relatives of marine symbionts from the Candidatus Thiodiazotropha genus contributed ~30% and ~20% of all sulfur-oxidizing dsrA and nitrogen-fixing nifK transcripts in stressed roots, respectively. Based on these findings, we propose that the symbiosis between S. alterniflora and sulfur-oxidizing bacteria is key to ecosystem functioning of coastal salt marshes.

ad
生物環境工学
ad
ad


Follow
ad
タイトルとURLをコピーしました