脂肪肝病理画像から発がんを予測するAIモデル~暗黙知が解き明かす肝がんのサイン~

ad

2024-05-23 東京大学

脂肪肝病理画像から発がんを予測するAIモデル~暗黙知が解き明かす肝がんのサイン~

東京大学医学部附属病院 消化器内科の中塚拓馬 助教、検査部の佐藤雅哉 講師(消化器内科医)、同大 大学院医学系研究科 消化器内科学の建石良介 准教授、藤城光弘 教授、小池和彦 東京大学名誉教授らの研究グループは、日本アイ・ビー・エム株式会社 コンサルティング事業本部 橋爪夏香、鎌田亜美、米澤翔、壁谷佳典の協力の下、脂肪肝デジタル病理画像の深層学習によって、脂肪肝からの肝がん発症リスクを予測する新しいAIモデルを構築しました。

脂肪性肝疾患(SLD: Steatotic liver disease)は、肥満人口の増加に伴い、世界中で問題となっています。近年では人口の約3割が脂肪肝を有すると言われ、その中から肝がんの発症リスクの高い患者を特定することが重要な課題となっています。

本研究では、脂肪肝肝生検標本のデジタル病理画像を深層学習し、肝がん発症リスクを予測する人工知能(AI)モデルを構築しました。肝線維化は、肝がん発症リスクの最も重要な指標とされていますが、SLDにおいては線維化が進展していない状態においても肝がんを発症するケースが頻繁に報告されています。本AIモデルは、非がん組織における細胞異型、核細胞質比の上昇、炎症細胞浸潤、大型脂肪滴の消失といった、これまで注目されていなかった微細な病理所見を認識することにより、線維化が進行していない症例からの肝がん発症予測を可能としました。

今回の研究結果は、脂肪肝から発症する肝がんの早期発見を可能とし、脂肪肝病理所見と肝がんリスク評価に新たな視点を提供することが期待されます。本研究成果は5月20日(現地時間)に学術誌「Hepatology」オンライン版にて発表されました。

※詳細は添付ファイルをご覧下さい。

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました