原子から臓器までのシミュレーションにより、心不全の新たな治療メカニズムが明らかになる(Simulations from Atom to Organ Reveal Novel Treatment Mechanisms for Heart Failure)

ad

2024-08-19 カリフォルニア大学サンディエゴ校(UCSD)

カリフォルニア大学サンディエゴ校の研究者チームは、心不全の薬候補の治療メカニズムを原子レベルから臓器システムスケールまでシミュレートする初のマルチスケール計算モデルを開発しました。この研究により、自然発生する小分子であるデオキシATP(dATP)が心不全において心拍出を改善する仕組みが明らかになりました。dATPが心筋のATPのわずか7%を置き換えるだけで、心不全の心拍出機能低下を完全に逆転させる可能性が示唆されています。このブレークスルーは、分子レベルの相互作用が臓器全体に及ぼす影響を理解する新たな道を開きました。

<関連情報>

マルチスケールモデリングにより、2′-デオキシ-ATPが心不全の心室機能をどのように回復させるかが明らかになった Multiscale modeling shows how 2’-deoxy-ATP rescues ventricular function in heart failure

Abigail E. Teitgen, Marcus T. Hock, Kimberly J. McCabe, +6, and Andrew D. McCulloch
Proceedings of the National Academy of Sciences  Published:August 22, 2024
DOI:https://doi.org/10.1073/pnas.2322077121

Significance

Myosin activators can improve cardiac function in heart failure with reduced ejection fraction. However, it is not fully understood how the molecular effects of these drugs lead to improvements in ventricular function. We used a multiscale modeling analysis spanning atom to organ system scales to link the molecular mechanisms of 2’-deoxy-ATP (dATP), a myosin activator, to changes in contraction and relaxation at multiple scales of function. Multiscale modeling allowed us to identify therapeutic mechanisms of dATP at each of these scales, which can be extended to other candidate therapeutics.

Abstract

2’-deoxy-ATP (dATP) improves cardiac function by increasing the rate of crossbridge cycling and Ca2+ transient decay. However, the mechanisms of these effects and how therapeutic responses to dATP are achieved when dATP is only a small fraction of the total ATP pool remain poorly understood. Here, we used a multiscale computational modeling approach to analyze the mechanisms by which dATP improves ventricular function. We integrated atomistic simulations of prepowerstroke myosin and actomyosin association, filament-scale Markov state modeling of sarcomere mechanics, cell-scale analysis of myocyte Ca2+ dynamics and contraction, organ-scale modeling of biventricular mechanoenergetics, and systems level modeling of circulatory dynamics. Molecular and Brownian dynamics simulations showed that dATP increases the actomyosin association rate by 1.9 fold. Markov state models predicted that dATP increases the pool of myosin heads available for crossbridge cycling, increasing steady-state force development at low dATP fractions by 1.3 fold due to mechanosensing and nearest-neighbor cooperativity. This was found to be the dominant mechanism by which small amounts of dATP can improve contractile function at myofilament to organ scales. Together with faster myocyte Ca2+ handling, this led to improved ventricular contractility, especially in a failing heart model in which dATP increased ejection fraction by 16% and the energy efficiency of cardiac contraction by 1%. This work represents a complete multiscale model analysis of a small molecule myosin modulator from single molecule to organ system biophysics and elucidates how the molecular mechanisms of dATP may improve cardiovascular function in heart failure with reduced ejection fraction.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました