データ駆動型生成AIの限界に迫る~生成AIで信頼性の高い分子設計を実現する戦略~

ad

2025-03-14 横浜市立大学

横浜市立大学大学院生命医科学研究科の研究グループは、生成AIを用いた分子設計において、AIの予測信頼性を維持しながら複数の特性を同時に最適化するフレームワーク「DyRAMO」を開発しました。従来の分子設計では、AIが有望と予測した分子が実際には望ましくないケース(報酬ハッキング)が問題となっていました。DyRAMOは、予測AIの信頼度を自動的に調整し、信頼性の高い評価に基づく分子設計を可能にします。抗がん剤設計での検証では、DyRAMOにより設計された分子の中に、既存の承認薬であるゲフィチニブが含まれていました。この成果は、医薬品や機能性材料の開発プロセスを加速させることが期待されます。

<関連情報>

多目的分子設計における報酬ハッキングを回避するためのデータ駆動型生成戦略 A data-driven generative strategy to avoid reward hacking in multi-objective molecular design

Tatsuya Yoshizawa,Shoichi Ishida,Tomohiro Sato,Masateru Ohta,Teruki Honma & Kei Terayama

Nature Communications  Published:11 March 2025

DOI:https://doi.org/10.1038/s41467-025-57582-3

データ駆動型生成AIの限界に迫る~生成AIで信頼性の高い分子設計を実現する戦略~

Abstract

Molecular design using data-driven generative models has emerged as a promising technology, impacting various fields such as drug discovery and the development of functional materials. However, this approach is often susceptible to optimization failure due to reward hacking, where prediction models fail to extrapolate, i.e., fail to accurately predict properties for designed molecules that considerably deviate from the training data. While methods for estimating prediction reliability, such as the applicability domain (AD), have been used for mitigating reward hacking, multi-objective optimization makes it challenging. The difficulty arises from the need to determine in advance whether the multiple ADs with some reliability levels overlap in chemical space, and to appropriately adjust the reliability levels for each property prediction. Herein, we propose a reliable design framework to perform multi-objective optimization using generative models while preventing reward hacking. To demonstrate the effectiveness of the proposed framework, we designed candidates for anticancer drugs as a typical example of multi-objective optimization. We successfully designed molecules with high predicted values and reliabilities, including an approved drug. In addition, the reliability levels can be automatically adjusted according to the property prioritization specified by the user without any detailed settings.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました