ORNLの中性子研究が植物の干ばつ耐性に関する新たな洞察を提供(Neutrons at ORNL offer insight into plant’s drought resilience)

ad

2025-03-14 オークリッジ国立研究所(ORNL)

オークリッジ国立研究所(ORNL)の研究者たちは、乾燥耐性の高い植物「クテナンテ・セトサ(Ctenanthe setosa)」を対象に、その驚異的な生存メカニズムを解明するための研究を行いました。 この植物は、水がほとんどない状態で最大60日間生存し、再度水分を得ると回復する能力を持っています。研究チームは、ORNLのスパレーション中性子源(SNS)にある拡張Qレンジ小角中性子散乱装置(EQ-SANS)を使用し、クテナンテ・セトサの光合成膜のナノスケール構造を非破壊的に観察しました。これにより、乾燥ストレス下および再水和後の回復過程における膜構造の変化を詳細に追跡することが可能となりました。この研究は、栽培作物の乾燥耐性向上に向けた新たな知見を提供し、将来的な農業技術の発展に寄与する可能性があります。

<関連情報>

干ばつストレスとその後の回復中のCtenanthe setosa (Roscoe) Eichlerの顆粒構造変化の動的生体内モニタリング Dynamic in vivo monitoring of granum structural changes of Ctenanthe setosa (Roscoe) Eichler during drought stress and subsequent recovery

Richard Hembrom, Renáta Ünnep, Éva Sárvári, Gergely Nagy, Katalin Solymosi
Physiologia Plantarum  Published: 22 January 2025
DOI:https://doi.org/10.1111/ppl.14621

ORNLの中性子研究が植物の干ばつ耐性に関する新たな洞察を提供(Neutrons at ORNL offer insight into plant’s drought resilience)

Abstract

Investigating the effects of drought stress and subsequent recovery on the structure and function of chloroplasts is essential to understanding how plants adapt to environmental stressors. We investigated Ctenanthe setosa (Roscoe) Eichler, an ornamental plant that can tolerate prolonged drought periods (40 and 49 days of water withdrawal). Conventional biochemical, biophysical, physiological and (ultra)structural methods combined for the first time in a higher plant with in vivo small-angle neutron scattering (SANS) were used to characterize the alterations induced by drought stress and subsequent recovery. Upon drought stress, no significant changes occurred in the chloroplast ultrastructure, chlorophyll content, 77K fluorescence emission spectra and maximal quantum efficiency of PSII (Qy dark), but the actual quantum efficiency of PSII (Qy light) decreased, the amounts of PSI-LHCII complexes and PSII monomers declined, and that of PSII supercomplexes increased. Thickness of the leaf and of the adaxial hypodermis, chloroplast length and granum repeat distance (RD) values decreased upon drought stress, as shown by light microscopy and SANS, respectively. Because of the very slight (nm-range) changes in RD values, the large biological variability (significant differences in RD values among the leaves and studied leaf regions) and the invasive sampling required for this method, transmission electron microscopy (TEM) hardly showed significant differences. On the other side, in situ SANS analyses provided a unique insight in vivo into the fast structural recovery of the granum structure of drought-stressed leaves, which happened already 18 h after re-watering, while functional and biochemical recovery took place on a longer time scale.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました