MITのエンジニアが、組織が柔軟であったり硬かったりする意外な理由を解明(MIT engineers uncover a surprising reason why tissues are flexible or rigid)

ad

2025-06-20 マサチューセッツ工科大学(MIT)

MITのエンジニアが、組織が柔軟であったり硬かったりする意外な理由を解明(MIT engineers uncover a surprising reason why tissues are flexible or rigid)
These images directly visualize interstitial fluid (green) between cells (blue with red borders). They also show that the fluid between the cells helps the whole cluster change shape and recover, meaning this fluid movement is important for how tissues respond to pressure or injury. Credits:Image: Courtesy of the researchers

MITの研究により、組織の柔軟性や剛性は細胞間を満たす「間質液」の流動性に大きく左右されることが判明した。間質液の流れが制限されると組織は硬くなり、逆に流れやすいと柔軟で変形に強くなる。細胞クラスターを圧縮・解放する実験で、液体の動きが組織の力学応答を決定する新たな要因であることを明らかにした。この発見は、人工組織や再生医療の設計に重要な示唆を与える。成果はNature Physicsに掲載。

<関連情報>

細胞間流動が多細胞組織の多孔弾性を支配する Intercellular flow dominates the poroelasticity of multicellular tissues

Fan Liu,Bo Gao,Liran Lei,Shuainan Liu,Hui Li & Ming Guo
Nature Physics  Published:20 June 2025
DOI:https://doi.org/10.1038/s41567-025-02947-0

Abstract

The mechanical characteristics of cells and extracellular matrices—such as elasticity, surface tension and viscosity—can influence diseases such as fibrosis and tumour metastasis. Multicellular tissues have traditionally been modelled as viscoelastic materials, which overlooked the abundance of intercellular space and intercellular flow within the structure. Although intercellular flow can substantially impact development and disease progression, its role in the mechanical behaviour of tissues remains unclear. Here we show that fluid transport via the intercellular space determines the immediate mechanical response of tissues upon deformation. We directly measure the mechanical response of multicellular tissues by applying parallel plate compression via a tailored micro-mechanics platform. We find that both cultured three-dimensional cell spheroids and native mouse pancreatic islets exhibit apparent poroelastic behaviour over a timescale of up to a minute. These findings highlight the fundamental role of interstitial fluid transport in the mechanics of multicellular systems and could help identify potential physical regulators of development and diseases, as well as strategies for engineering multicellular living systems.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました