AIエージェントが遺伝子解析の精度向上に貢献(NIH researchers develop AI agent that improves accuracy of gene set analysis)

ad

2025-07-28 アメリカ国立衛生研究所(NIH)

米国NIHの研究チームは、遺伝子セット解析の精度を向上させるAIエージェント「GeneAgent」を開発。生成した解析結果を専門家による生物学データベースで自動検証し、誤情報の抑制に成功した。既知の遺伝子セットで高い精度を示し、新規セットでも有用な生物学的洞察を提供。生成・検証・修正・要約の4段階プロセスを通じ、信頼性の高い説明を付加。がん研究や疾患解析などへの応用が期待される。

<関連情報>

GeneAgent:ドメインデータベースを活用した遺伝子セット解析用の自己検証言語エージェント GeneAgent: self-verification language agent for gene-set analysis using domain databases

Zhizheng Wang,Qiao Jin,Chih-Hsuan Wei,Shubo Tian,Po-Ting Lai,Qingqing Zhu,Chi-Ping Day,Christina Ross,Robert Leaman & Zhiyong Lu
Nature Methods  Published:28 July 2025
DOI:https://doi.org/10.1038/s41592-025-02748-6

AIエージェントが遺伝子解析の精度向上に貢献(NIH researchers develop AI agent that improves accuracy of gene set analysis)

Abstract

Gene-set analysis seeks to identify the biological mechanisms underlying groups of genes with shared functions. Large language models (LLMs) have recently shown promise in generating functional descriptions for input gene sets but may produce factually incorrect statements, commonly referred to as hallucinations in LLMs. Here we present GeneAgent, an LLM-based AI agent for gene-set analysis that reduces hallucinations by autonomously interacting with biological databases to verify its own output. Evaluation of 1,106 gene sets collected from different sources demonstrates that GeneAgent is consistently more accurate than GPT-4 by a significant margin. We further applied GeneAgent to seven novel gene sets derived from mouse B2905 melanoma cell lines. Expert review confirmed that GeneAgent produces more relevant and comprehensive functional descriptions than GPT-4, providing valuable insights into gene functions and expediting knowledge discovery.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました