ロボット技術によるミツバチの集団行動研究(Studying collective bee behavior thanks to robotics)

ad

2025-07-28 スイス連邦工科大学ローザンヌ校(EPFL)

EPFLのMobots研究室は、ミツバチの自然な群行動を観察するため、カメラを使わずに蜜の位置と量を検出できるロボット式蜂巣フレームを開発した。64個の温度センサーと加熱アクチュエーターにより、巣房の蜜の有無を温度変化から推定できる。この装置は蜂の移動や巣内の蜜の時間的変化も把握可能で、温度制御により蜂の行動を誘導する実験にも成功した。将来的には熱波の影響や育成行動の研究、教育利用も見込まれる。

ロボット技術によるミツバチの集団行動研究(Studying collective bee behavior thanks to robotics)© 2025 EPFL

<関連情報>

バイオハイブリッドシステムの感覚機能の拡張:ハニカム充填の予測 Extending Sensory Capabilities of a Biohybrid System: Prediction of Honeycomb Fill

Cyril Monette; Rob Mills; Francesco Mondada
2024 12th International Conference on Control, Mechatronics and Automation  Date Added to IEEE Xplore: 20 January 2025
DOI:https://doi.org/10.1109/ICCMA63715.2024.10843927

Abstract

Interactive robotics is increasingly used to investigate animal behaviour, including communication, mating and collective dynamics. An essential component for such systems is sensing the animals and the relevant aspects of the habitat to enable coherent closed-loop interactions with the animals. For honeybee-robot biohybrid systems, one such dimension is the material that the bees have filled their honeycombs with, which can be coarsely measured by weight or more finely by image processing. However, in general beehives are challenging environments for image acquisition and local weighing due to hives’ compactness and propolis coverings, respectively. Here, we investigate the feasibility of measuring the honeycomb filling material at a sub-honeycomb scale. Specifically, we stimulate regions of honeycomb locally by injecting short thermal variations to measure the response in heating and cooling. Filling material and quantity are experimentally varied, and several machine learning techniques are compared for model extraction. We find that the filling material and its pair-wise interaction with filling density significantly influence the quantitative measures of temperature rise and fall times. A regression model of local honey volume based on the latter metrics yields a RMSE of 2.7ml, which corresponds to 1.5% of the total volume that can normally be stored locally. Importantly, this method provides a new channel of information about the state of a beehive and exemplifies how a combination of actuators and sensors can empower bio-hybrid systems in studying animals. The information yielded may indeed be applicable for investigating behaviour, robotic control, or potentially estimating the health status of a colony and providing early warning signals.

生物環境工学
ad
ad
Follow
ad
タイトルとURLをコピーしました