野生動物の多様な“痕跡”の画像から種の推定を可能にするAIモデルを開発~専門知識がなくても非侵襲的に動物の種を識別できる新たなアニマルトラッキングAIモデル~

ad

2025-07-29 産業技術総合研究所

産総研と大阪大学の研究チームは、足跡・糞・羽などの痕跡画像から野生動物の種を推定できるAIモデルとデータセット「AnimalClue」を開発した。968種・約16万件の痕跡画像を学習し、羽の画像ではTop-1精度65%以上を達成。専門知識なしでも動物の同定が可能で、環境アセスメントや生物多様性調査への応用が期待される。成果はMIRU2025およびICCV2025で発表予定。

野生動物の多様な“痕跡”の画像から種の推定を可能にするAIモデルを開発~専門知識がなくても非侵襲的に動物の種を識別できる新たなアニマルトラッキングAIモデル~
痕跡から野生動物の種を推定するAIモデルの開発

<関連情報>

AnimalClue:動物の痕跡から動物を識別する AnimalClue: Recognizing Animals by their Traces

Risa Shinoda, Nakamasa Inoue, Iro Laina, Christian Rupprecht, Hirokatsu Kataoka
arXiv  Submitted on 27 Jul 2025
DOI:https://doi.org/10.48550/arXiv.2507.20240

Abstract

Wildlife observation plays an important role in biodiversity conservation, necessitating robust methodologies for monitoring wildlife populations and interspecies interactions. Recent advances in computer vision have significantly contributed to automating fundamental wildlife observation tasks, such as animal detection and species identification. However, accurately identifying species from indirect evidence like footprints and feces remains relatively underexplored, despite its importance in contributing to wildlife monitoring. To bridge this gap, we introduce AnimalClue, the first large-scale dataset for species identification from images of indirect evidence. Our dataset consists of 159,605 bounding boxes encompassing five categories of indirect clues: footprints, feces, eggs, bones, and feathers. It covers 968 species, 200 families, and 65 orders. Each image is annotated with species-level labels, bounding boxes or segmentation masks, and fine-grained trait information, including activity patterns and habitat preferences. Unlike existing datasets primarily focused on direct visual features (e.g., animal appearances), AnimalClue presents unique challenges for classification, detection, and instance segmentation tasks due to the need for recognizing more detailed and subtle visual features. In our experiments, we extensively evaluate representative vision models and identify key challenges in animal identification from their traces. Our dataset and code are available at this https URL

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました