細胞自己組織化の最適化手法を開発(Optimizing how cells self-organize)

ad

2025-08-20 ハーバード大学

Web要約 の発言:
ハーバード大学SEASの研究チームは、細胞が自発的に組織化して形を形成する過程を最適化問題として捉え、機械学習で使われる自動微分手法を応用して数理的に解析する枠組みを開発した(Nature Computational Science掲載)。これにより、遺伝子ネットワーク、化学シグナル、細胞接着などの複雑な相互作用が、集団としてどのように形態を生み出すかを高精度にシミュレーション可能となった。さらに、特定の構造を形成させるために細胞が従うべきルールを抽出でき、人工組織の設計や細胞プログラミングへの応用が期待される。概念実証段階ながら、将来的には組織工学や再生医療に新しい設計手法をもたらす可能性がある。

細胞自己組織化の最適化手法を開発(Optimizing how cells self-organize)Schematic of horizontal elongation in an optimized cell cluster. (a) Left: the final configuration of a simulation with randomly initialized parameters; right: the final simulation state after learning. Source cells, in red, secrete the growth factor and cannot divide. Proliferating cells, in gray, sense the growth factor and divide in response to it. (b) The learned gene network. The receptor gene is activated only by the presence of the external chemical factor, which results in repression of the division propensity. (c) Chemical gradient created by source cells along the cluster x-coordinate. (d) Division propensity distribution at the end of the simulation along the x-axis, highlighting the concentration of dividing cells at the tip.

<関連情報>

細胞クラスターの形態形成を微分可能プログラミングで制御する Engineering morphogenesis of cell clusters with differentiable programming

Ramya Deshpande,Francesco Mottes,Ariana-Dalia Vlad,Michael P. Brenner & Alma Dal Co
Nature Computational Science  Published:13 August 2025
DOI:https://doi.org/10.1038/s43588-025-00851-4

Abstract

Understanding the fundamental rules of organismal development is a central, unsolved problem in biology. These rules dictate how individual cellular actions coordinate over macroscopic numbers of cells to grow complex structures with exquisite functionality. We use recent advances in automatic differentiation to discover local interaction rules and genetic networks that yield emergent, systems-level characteristics in a model of development. We consider a growing tissue with cellular interactions mediated by morphogen diffusion, cell adhesion and mechanical stress. Each cell has an internal genetic network that is used to make decisions based on the cell’s local environment. Here we show that one can learn the parameters governing cell interactions in the form of interpretable genetic networks for complex developmental scenarios. When combined with recent experimental advances measuring spatio-temporal dynamics and gene expression of cells in a growing tissue, the methodology outlined here offers a promising path to unraveling the cellular bases of development.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました