トガリネズミにおける脳の季節的縮小の仕組みを解明(Rare seasonal brain shrinkage in shrews is driven by water loss)

ad

2025-09-01 マックス・プランク研究所

マックス・プランク動物行動研究所などの国際チームは、ヨーロッパトガリネズミが冬に脳を縮小し、夏に再び成長させる「デーネル現象」の仕組みを解明した。成果は『Current Biology』に掲載された。MRIを用いた非侵襲的解析により、冬期に脳体積が約9%減少するのは細胞死ではなく細胞内の水分喪失によることが判明。驚くべきことに細胞数は維持あるいは増加しており、春には再び正常な大きさに戻る。特に水輸送を担うタンパク質アクアポリン4の関与が示唆され、人間のアルツハイマー病やパーキンソン病で見られる脳萎縮との共通点も確認された。ネオコルテックスや小脳は水分バランスを維持し、記憶や運動制御といった重要機能を保護していた。この知見は、不可逆的な脳体積減少を伴う神経疾患の新たな治療法探索に貢献する可能性がある。研究者らは次段階として、春の脳再成長の分子機構解明に取り組む予定である。

トガリネズミにおける脳の季節的縮小の仕組みを解明(Rare seasonal brain shrinkage in shrews is driven by water loss)
3D reconstruction of a summer brain (left) and a winter brain (right), of the same individual of common shrew, imaged with in vivo MRI. © Dominik von Elverfeldt / University of Freiburg

<関連情報>

細胞死を伴わない水分喪失によるコノハツリガネネズミの季節的脳萎縮のプログラム化 Programmed seasonal brain shrinkage in the common shrew via water loss without cell death

Cecilia Baldoni ∙ Marco Reisert ∙ Bethany Smith ∙ … ∙ John Nieland ∙ Dina K.N. Dechmann ∙ Dominik von Elverfeldt
Current Biology  Published:September 1, 2025
DOI:https://doi.org/10.1016/j.cub.2025.08.015

Highlights

  • Seasonal brain shrinkage in shrews occurs via cell shrinkage, not cell death
  • Brain intracellular water decreases and extracellular water increases in winter
  • Neuronal and glial numbers remain stable across seasons, preserving brain function
  • Aquaporin-4 expression declines in cortex and hippocampus in winter

Summary

Brain plasticity, the brain’s inherent ability to adapt its structure and function, is crucial for responding to environmental challenges but is usually not linked to a significant change in size. A striking exception to this is Dehnel’s phenomenon, where seasonal reversible brain-size reduction occurs in some small mammals to decrease metabolic demands during resource-scarce winter months. Despite these volumetric changes being well documented, the specific microstructural alterations that facilitate this adaptation remain poorly understood. Our study employed diffusion microstructure imaging (DMI) to explore these changes in common shrews, revealing significant alterations in water diffusion properties such as increased mean diffusivity and decreased fractional anisotropy, leading to decreased water content inside brain cells during winter. These findings confirm that brain-size reduction correlates with a decrease in cell size, as our data indicate no reduction in cell numbers, showcasing a reorganization of brain tissue that supports survival without compromising brain function. These findings extend our understanding of neuronal resilience and may inform future research on regenerative mechanisms, particularly during the spring regrowth phase, offering potential strategies relevant to neurodegenerative disease.

生物環境工学
ad
ad
Follow
ad
タイトルとURLをコピーしました