ゲノム構造は“多重の守り”で維持される~発生や疾患における構造変化の理解に新たな手がかり~

ad

2025-09-26 理化学研究所

理化学研究所の研究チームは、ゲノムの立体構造(3Dゲノム)が複数の抑制性クロマチン修飾により安定的に維持されていることを解明した。研究者らは、H3K9およびH3K27メチル化が欠損した細胞を作製し、RNA-seqやChIP-seq、Hi-C解析を実施。その結果、H3K9メチル化が失われるとH3K27メチル化が代替的に作用してCTCFの結合を阻害し、異常なTAD境界形成を防いでいることが判明した。また、両方の修飾を失うと新規CTCF結合が多数出現し、3Dゲノム構造や遺伝子発現が大きく変化した。さらに解析から、初期胚発生ではH3K9メチル化が一時的に緩むことで胚特有のゲノム構造が形成される一方、他の段階では多重の修飾機構が異常形成を抑制していることも示された。今回の成果は、発生や老化、がんなどで見られるゲノム構造異常の分子基盤理解に新たな手がかりを提供する。

ゲノム構造は“多重の守り”で維持される~発生や疾患における構造変化の理解に新たな手がかり~
抑制性クロマチン修飾によるクロマチンタンパク質CTCFの結合および3Dゲノムの制御

<関連情報>

H3K27とH3K9のメチル化は、3Dゲノムの完全性を維持するために潜在的なCTCF結合部位をマスクします H3K27 and H3K9 methylation mask potential CTCF binding sites to maintain 3D genome integrity

Kei Fukuda,Chikako Shimura and Yoichi Shinkai
Genome Research  Published:August 5, 2025
DOI:10.1101/gr.280732.125

Abstract

The three-dimensional (3D) genome structure is essential for gene regulation and various genomic functions. CTCF plays a key role in organizing topologically associated domains (TADs) and promoter-enhancer loops, contributing to proper cell differentiation and development. Although CTCF binds the genome with high sequence specificity, its binding sites are dynamically regulated during development, and aberrant CTCF binding is linked to diseases such as cancer and neurological disorders, and aging. However, the mechanisms controlling CTCF binding remain unclear. Here, we investigate the role of repressive chromatin modifications in CTCF binding using H3K9 methyltransferase-deficient immortalized mouse embryonic fibroblasts (iMEFs) and H3K27 methyltransferase EZH1/2 inhibitor. We find that H3K9 and H3K27 methylation regulate CTCF binding at distinct genomic regions, and their simultaneous loss induces drastic changes in CTCF binding. These changes are associated with alterations in 3D genome architecture and gene expression, suggesting that repressive chromatin modifications preserve proper chromatin organization by preventing aberrant CTCF binding. Additionally, whereas CTCF binding sites repressed by H3K9 methylation are bound by CTCF in early mouse embryos, those repressed by both H3K9 and H3K27 methylation remain inaccessible, with early embryo–specific H3K27 methylation forming at these sites. These findings implicate that H3K27 methylation plays a role for restricting CTCF binding in early embryos, ensuring proper genome organization during development.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました