精子の運動スイッチを制御する新たな仕組みを発見~男性不妊症の原因解明と治療法開発へ前進~

ad

2025-10-15 大阪大学微生物病研究所

大阪大学微生物病研究所の研究チームは、精子運動の鍵を握る情報伝達分子cAMPの産生を制御する新機構を発見した。未知の膜タンパク質TMEM217がcAMP生成酵素sACを安定化し、精子の運動開始を制御していた。TMEM217欠損マウスでは精子が不動化し不妊となるが、cAMP類似体添加で運動性と受精能が回復。TMEM217はSLC9C1と複合体を形成してcAMP経路を維持しており、この知見は精子無力症など男性不妊症の新たな診断・治療標的となる。成果は『PNAS』誌に掲載。

精子の運動スイッチを制御する新たな仕組みを発見~男性不妊症の原因解明と治療法開発へ前進~

図1)TMEM217とcAMP産生
TMEM217はSLC9C1というタンパク質と協働してcAMP産生タンパク質(sAC)を安定に保っている。

<関連情報>

TMEM217とナトリウム-プロトン交換輸送体SLC9C1との複合体の形成は、マウスの精子の運動性と雄の生殖能力に重要である Formation of a complex between TMEM217 and the sodium-proton exchanger SLC9C1 is crucial for mouse sperm motility and male fertility

Rie Iida-Norita, Haruhiko Miyata, Akinori Ninomiya, +4 , and Masahito Ikawa
Proceedings of the National Academy of Sciences  Published:October 15, 2025
DOI:https://doi.org/10.1073/pnas.2513924122

Significance

Asthenozoospermia, characterized by impaired sperm motility, is a common cause of male infertility. The Na+/H+ exchanger SLC9C1 is a critical regulator of sperm motility through the modulation of intracellular signaling. In this study, we demonstrate that TMEM217 is an interaction partner of SLC9C1. Our results indicate that the TMEM217–SLC9C1 complex is essential for 3′,5′-cyclic monophosphate (cAMP) signaling, sperm motility, and male fertility. Importantly, impaired sperm motility and fertilization ability of Tmem217 Knockout (KO) spermatozoa were rescued by enhancing cAMP signaling. Our findings reveal the biological significance of the conserved TMEM217–SLC9C1 interaction and give insights into the diagnosis and therapeutic strategy of asthenozoospermia associated with defective cAMP signaling.

Abstract

Sperm motility is essential for male fertility and is tightly controlled by signaling events in the flagellum. Slc9c1 encodes a sperm-specific Na+/H+ exchanger (sNHE/SLC9C1) that localizes to the flagellum and is indispensable for sperm motility and male fertility. SLC9C1 is unique among Na+/H+ exchangers in that it possesses a voltage-sensing domain (VSD), the physiological function of which remains poorly understood in mammals. Here, by analyzing coevolving genes with Slc9c1, we identified Tmem217, which encodes a transmembrane protein that is localized in the sperm flagellum. Knockout (KO) of Tmem217 in mice resulted in sperm motility defects and male infertility, phenocopying Slc9c1 KO mice. Coimmunoprecipitation and structural prediction analyses indicated that TMEM217 binds to SLC9C1 via its VSD. Further analyses indicated that the amounts of SLC9C1 and its associated protein, soluble adenylyl cyclase (sAC), were lost in mature Tmem217 KO spermatozoa, leading to disrupted 3′,5′-cyclic monophosphate (cAMP) signaling pathways. Remarkably, cAMP analogs restored the impaired motility and fertilizing ability of Tmem217 KO spermatozoa in vitro, validating the essential role of TMEM217 in regulating cAMP production. Our findings indicate that the association of TMEM217 with SLC9C1 via its VSD is critical for the proper organization and function of the SLC9C1–sAC–cAMP axis in mature spermatozoa.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました