Fitbitを用いてPTSDの早期検出と治療を支援する研究(Can a Fitbit Help Detect and Treat PTSD in Veterans?)

ad

2025-11-04 ニューヨーク大学(NYU)

ニューヨーク大学(NYU)の研究チームは、ウェアラブルデバイス「Fitbit」を活用して退役軍人の心的外傷後ストレス障害(PTSD)を検出・支援する新たな方法を探っている。心拍数、睡眠、身体活動などの生理データを継続的に収集し、AIが異常パターンを解析することで、症状悪化や再発の早期検知を目指す。これにより、医療従事者が「必要なときに(Just-in-Time)」介入できる遠隔支援体制の構築が期待される。従来の診察では捉えにくい日常的ストレス反応を定量化できる点が利点だが、データプライバシー保護や機器装着の継続性、誤検知などの課題も残る。研究は初期段階ながら、デジタルバイオマーカーを用いたPTSD管理の実現に向けた重要な一歩であり、メンタルヘルスケアの個別化と遠隔医療の融合を促す可能性がある。

<関連情報>

退役軍人のPTSDと大麻使用に関する遠隔測定研究:募集、維持、データの入手可能性 A remote measurement study of PTSD and cannabis use among veterans: Recruitment, retention, and data availability

Daniel Leightley,Bistra Dilkina,Eric R. Pedersen,Emily Dworkin,Shaddy Saba,Esther Howe,Praneeth Thota,Sriram Nuthi,Angeles Sedano,Jordan P. Davis
PLOS One
  Published: September 29, 2025
DOI:https://doi.org/10.1371/journal.pone.0332239

Fitbitを用いてPTSDの早期検出と治療を支援する研究(Can a Fitbit Help Detect and Treat PTSD in Veterans?)

Abstract

With the growing availability of cannabis and increasing public support for legalization, cannabis use disorder (CUD) rates have risen, particularly among veterans, who face disproportionately high rates of co-occurring posttraumatic stress disorder (PTSD) and CUD. Veterans often use cannabis to manage PTSD symptoms, yet research suggests cannabis may exacerbate and maintain these symptoms. Predicting symptom escalation remains challenging due to the complexity of PTSD-CUD interactions and a lack of predictive tools. Advances in mobile and wearable technology provide new opportunities for real-time monitoring, integrating active (self-reported) and passive (sensor-based) data to improve symptom prediction and intervention timing. This longitudinal study examined the feasibility of collecting data among recently discharged veterans with PTSD and cannabis use. The study employed the MAVERICK mobile app, integrating passive data (e.g., heart rate, sleep, activity) and active data (e.g., self-report surveys) over three months. Phase 1 involved beta testing with 20 veterans, assessing feasibility and acceptability, while Phase 2 recruited 75 veterans to evaluate recruitment, retention, and data completeness. Findings indicate high feasibility, with 91.9% of participants providing passive data and a 68% response rate for daily self-report measures. However, data availability varied across measures. These results highlight the potential for integrating passive and active data to improve symptom prediction and early intervention efforts for PTSD and CUD in veterans. Future research should explore long-term engagement strategies and clinical applications of these digital tools to enhance veteran mental health care.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました