細胞の発達過程をマッピングする新しいアルゴリズムを開発(New algorithm maps how cells develop)

ad

2025-12-12 カロリンスカ研究所(KI)

Karolinska Institutet(スウェーデン)と KTH Royal Institute of Technology の研究チームは、細胞がどのように発生し分化するかを「1回の遺伝子発現スナップショット」から再構築できる新アルゴリズム「MultistageOT」を開発しました。 現在の単一細胞解析では、細胞を破壊してデータを得るため、発生過程を追跡できません。しかし、このアルゴリズムは数学的最適輸送理論に基づき、細胞発生の途中段階を推定でき、血液細胞の発生データに適用して細胞の成熟過程を予測・可視化しました。この手法により、発生の経路や将来の細胞の機能を予測できるほか、期待とは異なる細胞の変異も特定可能となり、発生異常や疾患の原因解明に役立つと期待されています。MultistageOT は動物以外の生物にも利用可能な汎用的な計算法であると研究者は述べています。研究成果は PNAS 誌に掲載されました。

<関連情報>

MultistageOT: 多段階最適輸送は単一細胞データのスナップショットから軌道を推測します MultistageOT: Multistage optimal transport infers trajectories from a snapshot of single-cell data

Magnus Tronstad, Johan Karlsson, and Joakim S. Dahlin
Proceedings of the National Academy of Sciences  Published:December 11, 2025
DOI:https://doi.org/10.1073/pnas.2516046122

細胞の発達過程をマッピングする新しいアルゴリズムを開発(New algorithm maps how cells develop)

Significance

Cell differentiation is a fundamental biological process whose dysregulation leads to disease. Single-cell sequencing offers unique insight into the differentiation process, but data analysis remains a major modeling challenge—particularly in complex branching systems e.g. hematopoiesis (blood cell development). Here, we extend optimal transport theory to address a previously inaccessible modeling problem: inferring developmental progression of differentiating cells from a single snapshot of an in vivo process. We achieve this by deriving a multistage transport model. Our approach accurately reconstructs cell fate decision in hematopoiesis. Moreover, it infers rare bipotent cell states and uniquely detects individual outlier cells that diverge from the main differentiation paths. We thus introduce a powerful mathematical framework that enables more granular analyses of cell differentiation.

Abstract

Single-cell RNA-sequencing captures a temporal slice, or a snapshot, of a cell differentiation process. A major bioinformatical challenge is the inference of differentiation trajectories from a single snapshot, and methods that account for outlier cells that are unrelated to the differentiation process have yet to be established. We present MultistageOT (https://github.com/dahlinlab/MultistageOT), a generalized optimal transport-based framework that models cell differentiation in a single snapshot as a series of intermediate cell transitions. MultistageOT employs multiple transport stages to establish temporal progression within the snapshot—overcoming limitations with the classic bimarginal formulation of optimal transport. Moreover, our multistage framework uses global information across all cells and differentiation stages to infer coherent trajectories from initial to terminal states. This allows MultistageOT to infer individual outlier cells that are unrelated to the analyzed differentiation process—an essential mechanism for preventing the inference of spurious or biologically implausible trajectories. We benchmark MultistageOT on snapshot data of cell differentiation, showing significantly improved fate prediction accuracy over state-of-the-art bimarginal optimal transport and demonstrating MultistageOT’s unique ability to detect outlier cells.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました