くねくねとしたミミズの結び目の数理を解明する(Unraveling the Mathematics Behind Wiggly Worm Knots)

ad

2023-04-27 ジョージア工科大学

くねくねとしたミミズの結び目の数理を解明する(Unraveling the Mathematics Behind Wiggly Worm Knots)

カリフォルニア州の小さな黒いミミズが、短時間で自分たちをからませて解き、捕食者から逃げる機能を持つことが、ジョージア工科大学のSaad Bhamla助教授と彼の研究チームによって明らかにされた。
このミミズのからまり方と解き方のメカニズムを理解するため、Bhamla教授はMITの数学者と協力し、自己組織化し、早く、可逆的に動く繊維状のシェイプシフトロボットの設計に影響を与える可能性のある研究を行った。
また、この研究は、異なる分野の最も複雑な問題に答えるために、学際的な協力がどのように機能するかを示している。

<関連情報>

生きたもつれ物質の超高速可逆的自己組織化 Ultrafast reversible self-assembly of living tangled matter

Vishal P. Patil,Harry Tuazon,Emily Kaufman,Tuhin Chakrabortty,David Qin ,Jörn Dunkel and M. Saad Bhamla
Science  Published:27 Apr 2023
DOI:https://doi.org/10.1126/science.ade7759

Editor’s summary

Anyone who has ever packed away rope without coiling it properly knows how easily it gets tangled and how difficult it can be to untangle. By contrast, California blackworms will migrate into a tangled ball over the course of minutes to regulate temperature or moisture but then disentangle and scatter within milliseconds upon sensing danger. Patil et al. combined ultrasound studies of worms with theory to develop a model of how the movement of individual worms (or filaments) affects the collective dynamics (see the Perspective by Panagiotou). In particular, they found that alternating helical waves enabled both tangle formation and ultrafast untangling. —Marc S. Lavine

Abstract

Tangled active filaments are ubiquitous in nature, from chromosomal DNA and cilia carpets to root networks and worm collectives. How activity and elasticity facilitate collective topological transformations in living tangled matter is not well understood. We studied California blackworms (Lumbriculus variegatus), which slowly form tangles in minutes but can untangle in milliseconds. Combining ultrasound imaging, theoretical analysis, and simulations, we developed and validated a mechanistic model that explains how the kinematics of individual active filaments determines their emergent collective topological dynamics. The model reveals that resonantly alternating helical waves enable both tangle formation and ultrafast untangling. By identifying generic dynamical principles of topological self-transformations, our results can provide guidance for designing classes of topologically tunable active materials.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました